Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (100k+40)-[150(10000-k)+25] = 0 .
    Question type: Equation
    Solution:Original question:
     (100 k + 40)(150(10000 k ) + 25) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 100 k + 40(150(10000 k ) + 25)
                                             = 100 k + 40150(10000 k )25
                                             = 100 k + 15150(10000 k )
                                             = 100 k + 15150 × 10000 + 150 k
                                             = 100 k + 151500000 + 150 k
                                             = 250 k 1499985
    The equation is transformed into :
     250 k 1499985 = 0

    Transposition :
     250 k = 0 + 1499985

    Combine the items on the right of the equation:
     250 k = 1499985

    The coefficient of the unknown number is reduced to 1 :
      k = 1499985 ÷ 250
        = 1499985 ×
1
250
        = 299997 ×
1
50

    We obtained :
      k =
299997
50
    This is the solution of the equation.

    Convert the result to decimal form :
      k = 5999.94



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。