Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (-x+76)(X-20) = (-2x+80)(2x-40) .
    Question type: Equation
    Solution:Original question:
     ( - x + 76)( x 20) = ( - 2 x + 80)(2 x 40)
    Remove the bracket on the left of the equation:
     Left side of the equation = - x ( x 20) + 76( x 20)
                                             = - x x + x × 20 + 76( x 20)
                                             = - x x + 20 x + 76 x 76 × 20
                                             = - x x + 20 x + 76 x 1520
                                             = - x x + 96 x 1520
    The equation is transformed into :
      - x x + 96 x 1520 = ( - 2 x + 80)(2 x 40)
    Remove the bracket on the right of the equation:
     Right side of the equation = - 2 x (2 x 40) + 80(2 x 40)
                                               = - 2 x × 2 x + 2 x × 40 + 80(2 x 40)
                                               = - 4 x x + 80 x + 80(2 x 40)
                                               = - 4 x x + 80 x + 80 × 2 x 80 × 40
                                               = - 4 x x + 80 x + 160 x 3200
                                               = - 4 x x + 240 x 3200
    The equation is transformed into :
      - x x + 96 x 1520 = - 4 x x + 240 x 3200

    After the equation is converted into a general formula, it is converted into:
    ( x - 20 )( x - 28 )=0
    From
        x - 20 = 0
        x - 28 = 0

    it is concluded that::
        x1=20
        x2=28
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。