Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1/[-1.2(x-1.86)+3.43]+0.9*(-1.2)/x = 0 .
    Question type: Equation
    Solution:Original question:
     1 ÷ ( -
6
5
( x
93
50
) +
343
100
) +
9
10
( -
6
5
) ÷ x = 0
     Multiply both sides of the equation by:( -
6
5
( x
93
50
) +
343
100
)
     1 +
9
10
( -
6
5
) ÷ x × ( -
6
5
( x
93
50
) +
343
100
) = 0
    Remove a bracket on the left of the equation::
     1
9
10
×
6
5
÷ x × ( -
6
5
( x
93
50
) +
343
100
) = 0
    The equation is reduced to :
     1
27
25
÷ x × ( -
6
5
( x
93
50
) +
343
100
) = 0
     Multiply both sides of the equation by: x
     1 x
27
25
( -
6
5
( x
93
50
) +
343
100
) = 0
    Remove a bracket on the left of the equation:
     1 x +
27
25
×
6
5
( x
93
50
)
27
25
×
343
100
= 0
    The equation is reduced to :
     1 x +
162
125
( x
93
50
)
9261
2500
= 0
    Remove a bracket on the left of the equation:
     1 x +
162
125
x
162
125
×
93
50
9261
2500
= 0
    The equation is reduced to :
     1 x +
162
125
x
7533
3125
9261
2500
= 0
    The equation is reduced to :
     
287
125
x
76437
12500
= 0

    Transposition :
     
287
125
x = 0 +
76437
12500

    Combine the items on the right of the equation:
     
287
125
x =
76437
12500

    The coefficient of the unknown number is reduced to 1 :
      x =
76437
12500
÷
287
125
        =
76437
12500
×
125
287
        =
76437
100
×
1
287

    We obtained :
      x =
76437
28700
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 2.66331



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。