| ( | 2 | + | X | ) | ÷ | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | = | 56 | − | 2 | − | X |
| Multiply both sides of the equation by: | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| ( | 2 | + | X | ) | = | 56 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | 2 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 56 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | 2 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 56 | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | 56 | ( | 2 | ÷ | 62 | ) | − | 2 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 56 | × | 1 | ( | X | ÷ | 42 | ) | − | 56 | × | 2 | ÷ | 62 | × | ( | X | ÷ | 42 | ) | + | 56 | ( | 2 | ÷ | 62 | ) | − | 2 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | X |
| 2 | + | X | = | 56 | ( | X | ÷ | 42 | ) | − | 56 31 | ( | X | ÷ | 42 | ) | + | 56 | ( | 2 | ÷ | 62 | ) | − | 2 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 56 | X | ÷ | 42 | − | 56 31 | ( | X | ÷ | 42 | ) | + | 56 | ( | 2 | ÷ | 62 | ) | − | 2 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 4 3 | X | − | 56 31 | ( | X | ÷ | 42 | ) | + | 56 | ( | 2 | ÷ | 62 | ) | − | 2 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 4 3 | X | − | 56 31 | X | ÷ | 42 | + | 56 | ( | 2 | ÷ | 62 | ) | − | 2 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 4 3 | X | − | 4 93 | X | + | 56 | ( | 2 | ÷ | 62 | ) | − | 2 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 40 31 | X | + | 56 | ( | 2 | ÷ | 62 | ) | − | 2 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 40 31 | X | + | 56 | × | 2 | ÷ | 62 | − | 2 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 40 31 | X | + | 56 31 | − | 2 | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 40 31 | X | + | 56 31 | − | 2 | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | − | 2 | ( | 2 | ÷ | 62 | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 40 31 | X | + | 56 31 | − | 2 | × | 1 | ( | X | ÷ | 42 | ) | + | 2 | × | 2 | ÷ | 62 | × | ( | X | ÷ | 42 | ) | − | 2 | ( | 2 | ÷ | 62 | ) |
| 2 | + | X | = | 40 31 | X | + | 56 31 | − | 2 | ( | X | ÷ | 42 | ) | + | 2 31 | ( | X | ÷ | 42 | ) | − | 2 | ( | 2 | ÷ | 62 | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 40 31 | X | + | 56 31 | − | 2 | X | ÷ | 42 | + | 2 31 | ( | X | ÷ | 42 | ) | − | 2 | ( | 2 | ÷ | 62 | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 40 31 | X | + | 56 31 | − | 1 21 | X | + | 2 31 | ( | X | ÷ | 42 | ) | − | 2 | ( | 2 | ÷ | 62 | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 809 651 | X | + | 56 31 | + | 2 31 | ( | X | ÷ | 42 | ) | − | 2 | ( | 2 | ÷ | 62 | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 809 651 | X | + | 56 31 | + | 2 31 | X | ÷ | 42 | − | 2 | ( | 2 | ÷ | 62 | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 809 651 | X | + | 56 31 | + | 1 651 | X | − | 2 | ( | 2 | ÷ | 62 | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 270 217 | X | + | 56 31 | − | 2 | ( | 2 | ÷ | 62 | ) | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 270 217 | X | + | 56 31 | − | 2 | × | 2 | ÷ | 62 | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 270 217 | X | + | 56 31 | − | 2 31 | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |
| 2 | + | X | = | 270 217 | X | + | 54 31 | − | X | ( | ( | 1 | − | 2 | ÷ | 62 | ) | ( | X | ÷ | 42 | ) | + | ( | 2 | ÷ | 62 | ) | ) |