Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (68-2y-40)(600-140+4y)+3920 = 6800 .
    Question type: Equation
    Solution:Original question:
     (682 y 40)(600140 + 4 y ) + 3920 = 6800
    Remove the bracket on the left of the equation:
     Left side of the equation = 68(600140 + 4 y )2 y (600140 + 4 y )40(600140 + 4 y ) + 3920
                                             = 68 × 60068 × 140 + 68 × 4 y 2 y (600140 + 4 y )40(600140 + 4 y )
                                             = 408009520 + 272 y 2 y (600140 + 4 y )40(600140 + 4 y ) + 3920
                                             = 35200 + 272 y 2 y (600140 + 4 y )40(600140 + 4 y )
                                             = 35200 + 272 y 2 y × 600 + 2 y × 1402 y × 4
                                             = 35200 + 272 y 1200 y + 280 y 8 y y 40(600140 + 4 y )
                                             = 35200648 y 8 y y 40(600140 + 4 y )
                                             = 35200648 y 8 y y 40 × 600 + 40 × 14040 × 4
                                             = 35200648 y 8 y y 24000 + 5600160 y
                                             = 16800808 y 8 y y
    The equation is transformed into :
     16800808 y 8 y y = 6800

    The solution of the equation:
        y1≈-112.146168 , keep 6 decimal places
        y2≈11.146168 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。