Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (100-x)(50-x)(-10-x)-24000-24000-400(50-x)-1600(-10-x)-900(100-x) = 0 .
    Question type: Equation
    Solution:Original question:
     (100 x )(50 x )( - 10 x )2400024000400(50 x )1600( - 10 x )900(100 x ) = 0
     Left side of the equation = (100 x )(50 x )( - 10 x )48000400(50 x )1600( - 10 x )900(100 x )
    The equation is transformed into :
     (100 x )(50 x )( - 10 x )48000400(50 x )1600( - 10 x )900(100 x ) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 100(50 x )( - 10 x ) x (50 x )( - 10 x )48000400(50 x )1600( - 10 x )900
                                             = 100 × 50( - 10 x )100 x ( - 10 x ) x (50 x )( - 10 x )48000400(50 x )
                                             = 5000( - 10 x )100 x ( - 10 x ) x (50 x )( - 10 x )48000400(50 x )1600
                                             = - 5000 × 105000 x 100 x ( - 10 x ) x (50 x )( - 10 x )48000400
                                             = - 500005000 x 100 x ( - 10 x ) x (50 x )( - 10 x )48000400(50 x )
                                             = - 980005000 x 100 x ( - 10 x ) x (50 x )( - 10 x )400(50 x )1600
                                             = - 980005000 x + 100 x × 10 + 100 x x x (50 x )( - 10 x )
                                             = - 980005000 x + 1000 x + 100 x x x (50 x )( - 10 x )400
                                             = - 980004000 x + 100 x x x (50 x )( - 10 x )400(50 x )1600
                                             = - 980004000 x + 100 x x x × 50( - 10 x ) + x x ( - 10 x )
                                             = - 980004000 x + 100 x x + x × 50 × 10 + x × 50 x
                                             = - 980004000 x + 100 x x + x × 500 + x × 50 x + x
                                             = - 980003500 x + 100 x x + x × 50 x + x x ( - 10 x )
                                             = - 980003500 x + 100 x x + x × 50 x x x × 10
                                             = - 980003500 x + 100 x x + x × 50 x x x × 10
                                             = - 980003500 x + 100 x x + x × 50 x x x × 10
                                             = - 1180003100 x + 100 x x + x × 50 x x x × 10
                                             = - 1180003100 x + 100 x x + x × 50 x x x × 10
                                             = - 1180003100 x + 100 x x + x × 50 x x x × 10
                                             = - 1020001500 x + 100 x x + x × 50 x x x × 10
                                             = - 1020001500 x + 100 x x + x × 50 x x x × 10
                                             = - 1020001500 x + 100 x x + x × 50 x x x × 10
                                             = - 192000600 x + 100 x x + x × 50 x x x × 10

    The solution of the equation:
        x1≈-31.735234 , keep 6 decimal places
        x2≈49.491941 , keep 6 decimal places
        x3≈122.243293 , keep 6 decimal places
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。