There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{({(rsin(x) - x)}^{2} + {(rcos(x) - y)}^{2})}^{1}}{2} + \frac{{({(rsin(x) - x*2)}^{2} + {(rcos(x) - y*2)}^{2})}^{1}}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = r^{2}sin^{2}(x) - 3rxsin(x) + \frac{5}{2}x^{2} + r^{2}cos^{2}(x) - 3rycos(x) + \frac{5}{2}y^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( r^{2}sin^{2}(x) - 3rxsin(x) + \frac{5}{2}x^{2} + r^{2}cos^{2}(x) - 3rycos(x) + \frac{5}{2}y^{2}\right)}{dx}\\=&r^{2}*2sin(x)cos(x) - 3rsin(x) - 3rxcos(x) + \frac{5}{2}*2x + r^{2}*-2cos(x)sin(x) - 3ry*-sin(x) + 0\\=& - 3rsin(x) - 3rxcos(x) + 5x + 3rysin(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!