There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {d}^{2}(x + y) + a + \frac{{b}^{2}}{x} + \frac{{c}^{2}}{y} - r(\frac{{b}^{2}}{x} + \frac{{c}^{2}}{y} - h)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = d^{2}x + d^{2}y + a + \frac{b^{2}}{x} - \frac{c^{2}r}{y} - \frac{b^{2}r}{x} + \frac{c^{2}}{y} + rh\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( d^{2}x + d^{2}y + a + \frac{b^{2}}{x} - \frac{c^{2}r}{y} - \frac{b^{2}r}{x} + \frac{c^{2}}{y} + rh\right)}{dx}\\=&d^{2} + 0 + 0 + \frac{b^{2}*-1}{x^{2}} + 0 - \frac{b^{2}r*-1}{x^{2}} + 0 + 0\\=&d^{2} - \frac{b^{2}}{x^{2}} + \frac{b^{2}r}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!