There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x(\frac{(x + (4000 - x - z))}{100} + 47) + (4000 - x - z)(\frac{(x + (4000 - x - z))}{100} + \frac{((4000 - x - z) + z)}{100} + 6) + z(\frac{((4000 - x - z) + z)}{100} + 47)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{100}x^{2} - 39x - \frac{1}{0}zx - 39z + \frac{1}{100}z^{2} + 344000\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{100}x^{2} - 39x - \frac{1}{0}zx - 39z + \frac{1}{100}z^{2} + 344000\right)}{dx}\\=&\frac{1}{100}*2x - 39 - \frac{1}{0}z + 0 + 0 + 0\\=&\frac{x}{50} - \frac{z}{0} - 39\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!