There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(sqrt({(\frac{1}{tan(x)})}^{2})) + ln(sqrt({(\frac{1}{sin(2x)} - \frac{cos(2x)}{sin(2x)})}^{2}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(sqrt(\frac{1}{tan^{2}(x)})) + ln(sqrt(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)}))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(sqrt(\frac{1}{tan^{2}(x)})) + ln(sqrt(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)}))\right)}{dx}\\=&\frac{-2sec^{2}(x)(1)*\frac{1}{2}}{(sqrt(\frac{1}{tan^{2}(x)}))tan^{3}(x)(\frac{1}{tan^{2}(x)})^{\frac{1}{2}}} + \frac{(\frac{-2cos(2x)*2cos^{2}(2x)}{sin^{3}(2x)} + \frac{-2cos(2x)sin(2x)*2}{sin^{2}(2x)} - \frac{2*-2cos(2x)*2cos(2x)}{sin^{3}(2x)} - \frac{2*-sin(2x)*2}{sin^{2}(2x)} + \frac{-2cos(2x)*2}{sin^{3}(2x)})*\frac{1}{2}}{(sqrt(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)}))(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)})^{\frac{1}{2}}}\\=&\frac{-sec^{2}(x)}{tan^{2}(x)sqrt(\frac{1}{tan^{2}(x)})} - \frac{2cos^{3}(2x)}{(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)})^{\frac{1}{2}}sin^{3}(2x)sqrt(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)})} - \frac{2cos(2x)}{(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)})^{\frac{1}{2}}sin(2x)sqrt(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)})} + \frac{4cos^{2}(2x)}{(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)})^{\frac{1}{2}}sin^{3}(2x)sqrt(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)})} + \frac{2}{(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)})^{\frac{1}{2}}sin(2x)sqrt(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)})} - \frac{2cos(2x)}{(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)})^{\frac{1}{2}}sin^{3}(2x)sqrt(\frac{cos^{2}(2x)}{sin^{2}(2x)} - \frac{2cos(2x)}{sin^{2}(2x)} + \frac{1}{sin^{2}(2x)})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!