There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ((1 - {a}^{2}){x}^{2} + 2a(1 - a)x + {a}^{2}{t}^{2})({\frac{1}{(x + a)}}^{2} + \frac{1}{({(a - 1)}^{2}x + a{t}^{2})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(x + a)^{2}} + \frac{x^{2}}{(a^{2}x - 2ax + x + at^{2})} - \frac{a^{2}x^{2}}{(x + a)^{2}} - \frac{a^{2}x^{2}}{(a^{2}x - 2ax + x + at^{2})} + \frac{2ax}{(x + a)^{2}} + \frac{2ax}{(a^{2}x - 2ax + x + at^{2})} - \frac{2a^{2}x}{(x + a)^{2}} - \frac{2a^{2}x}{(a^{2}x - 2ax + x + at^{2})} + \frac{a^{2}t^{2}}{(x + a)^{2}} + \frac{a^{2}t^{2}}{(a^{2}x - 2ax + x + at^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(x + a)^{2}} + \frac{x^{2}}{(a^{2}x - 2ax + x + at^{2})} - \frac{a^{2}x^{2}}{(x + a)^{2}} - \frac{a^{2}x^{2}}{(a^{2}x - 2ax + x + at^{2})} + \frac{2ax}{(x + a)^{2}} + \frac{2ax}{(a^{2}x - 2ax + x + at^{2})} - \frac{2a^{2}x}{(x + a)^{2}} - \frac{2a^{2}x}{(a^{2}x - 2ax + x + at^{2})} + \frac{a^{2}t^{2}}{(x + a)^{2}} + \frac{a^{2}t^{2}}{(a^{2}x - 2ax + x + at^{2})}\right)}{dx}\\=&(\frac{-2(1 + 0)}{(x + a)^{3}})x^{2} + \frac{2x}{(x + a)^{2}} + (\frac{-(a^{2} - 2a + 1 + 0)}{(a^{2}x - 2ax + x + at^{2})^{2}})x^{2} + \frac{2x}{(a^{2}x - 2ax + x + at^{2})} - (\frac{-2(1 + 0)}{(x + a)^{3}})a^{2}x^{2} - \frac{a^{2}*2x}{(x + a)^{2}} - (\frac{-(a^{2} - 2a + 1 + 0)}{(a^{2}x - 2ax + x + at^{2})^{2}})a^{2}x^{2} - \frac{a^{2}*2x}{(a^{2}x - 2ax + x + at^{2})} + 2(\frac{-2(1 + 0)}{(x + a)^{3}})ax + \frac{2a}{(x + a)^{2}} + 2(\frac{-(a^{2} - 2a + 1 + 0)}{(a^{2}x - 2ax + x + at^{2})^{2}})ax + \frac{2a}{(a^{2}x - 2ax + x + at^{2})} - 2(\frac{-2(1 + 0)}{(x + a)^{3}})a^{2}x - \frac{2a^{2}}{(x + a)^{2}} - 2(\frac{-(a^{2} - 2a + 1 + 0)}{(a^{2}x - 2ax + x + at^{2})^{2}})a^{2}x - \frac{2a^{2}}{(a^{2}x - 2ax + x + at^{2})} + (\frac{-2(1 + 0)}{(x + a)^{3}})a^{2}t^{2} + 0 + (\frac{-(a^{2} - 2a + 1 + 0)}{(a^{2}x - 2ax + x + at^{2})^{2}})a^{2}t^{2} + 0\\=&\frac{-2x^{2}}{(x + a)^{3}} + \frac{2x}{(x + a)^{2}} + \frac{2ax^{2}}{(a^{2}x - 2ax + x + at^{2})^{2}} - \frac{x^{2}}{(a^{2}x - 2ax + x + at^{2})^{2}} + \frac{2x}{(a^{2}x - 2ax + x + at^{2})} + \frac{2a^{2}x^{2}}{(x + a)^{3}} - \frac{2a^{2}x}{(x + a)^{2}} + \frac{a^{4}x^{2}}{(a^{2}x - 2ax + x + at^{2})^{2}} - \frac{2a^{3}x^{2}}{(a^{2}x - 2ax + x + at^{2})^{2}} - \frac{2a^{2}x}{(a^{2}x - 2ax + x + at^{2})} - \frac{4ax}{(x + a)^{3}} - \frac{6a^{3}x}{(a^{2}x - 2ax + x + at^{2})^{2}} + \frac{6a^{2}x}{(a^{2}x - 2ax + x + at^{2})^{2}} - \frac{2ax}{(a^{2}x - 2ax + x + at^{2})^{2}} + \frac{4a^{2}x}{(x + a)^{3}} + \frac{2a^{4}x}{(a^{2}x - 2ax + x + at^{2})^{2}} - \frac{2a^{2}t^{2}}{(x + a)^{3}} - \frac{a^{4}t^{2}}{(a^{2}x - 2ax + x + at^{2})^{2}} + \frac{2a^{3}t^{2}}{(a^{2}x - 2ax + x + at^{2})^{2}} - \frac{a^{2}t^{2}}{(a^{2}x - 2ax + x + at^{2})^{2}} + \frac{2a}{(x + a)^{2}} - \frac{2a^{2}}{(x + a)^{2}} + \frac{2a}{(a^{2}x - 2ax + x + at^{2})} - \frac{2a^{2}}{(a^{2}x - 2ax + x + at^{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!