There are 1 questions in this calculation: for each question, the 1 derivative of k is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({(k - m)}^{2}({k}^{4} + {k}^{3}((2 - 4m)r - 2) + {k}^{2}(2({m}^{2} + 2m - 1)r + {(1 - 2m)}^{2}{r}^{2} + 1) - km(4{m}^{2}{r}^{2} + m(-3{r}^{2} + 4r - 1) + {(r - 1)}^{2}) + {m}^{4}{r}^{2}))\ with\ respect\ to\ k:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = k^{6} - 4mrk^{5} + 2rk^{5} - 2k^{5} + 10m^{2}rk^{4} - 2rk^{4} + 4m^{2}r^{2}k^{4} - 4mr^{2}k^{4} + r^{2}k^{4} + k^{4} - 12m^{3}r^{2}k^{3} + 11m^{2}r^{2}k^{3} - 10m^{2}rk^{3} - m^{2}k^{3} - 3mr^{2}k^{3} + 6mrk^{3} - 3mk^{3} + 13m^{4}r^{2}k^{2} - 2mk^{5} + 4mk^{4} - 8m^{3}rk^{3} - 10m^{3}r^{2}k^{2} + 12m^{3}rk^{2} - 2m^{3}k^{2} + 3m^{2}r^{2}k^{2} - 6m^{2}rk^{2} + 3m^{2}k^{2} - 6m^{5}r^{2}k + m^{2}k^{4} + 2m^{4}rk^{2} + 3m^{4}r^{2}k - 4m^{4}rk + m^{4}k - m^{3}r^{2}k + 2m^{3}rk - m^{3}k + m^{6}r^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( k^{6} - 4mrk^{5} + 2rk^{5} - 2k^{5} + 10m^{2}rk^{4} - 2rk^{4} + 4m^{2}r^{2}k^{4} - 4mr^{2}k^{4} + r^{2}k^{4} + k^{4} - 12m^{3}r^{2}k^{3} + 11m^{2}r^{2}k^{3} - 10m^{2}rk^{3} - m^{2}k^{3} - 3mr^{2}k^{3} + 6mrk^{3} - 3mk^{3} + 13m^{4}r^{2}k^{2} - 2mk^{5} + 4mk^{4} - 8m^{3}rk^{3} - 10m^{3}r^{2}k^{2} + 12m^{3}rk^{2} - 2m^{3}k^{2} + 3m^{2}r^{2}k^{2} - 6m^{2}rk^{2} + 3m^{2}k^{2} - 6m^{5}r^{2}k + m^{2}k^{4} + 2m^{4}rk^{2} + 3m^{4}r^{2}k - 4m^{4}rk + m^{4}k - m^{3}r^{2}k + 2m^{3}rk - m^{3}k + m^{6}r^{2}\right)}{dk}\\=&6k^{5} - 4mr*5k^{4} + 2r*5k^{4} - 2*5k^{4} + 10m^{2}r*4k^{3} - 2r*4k^{3} + 4m^{2}r^{2}*4k^{3} - 4mr^{2}*4k^{3} + r^{2}*4k^{3} + 4k^{3} - 12m^{3}r^{2}*3k^{2} + 11m^{2}r^{2}*3k^{2} - 10m^{2}r*3k^{2} - m^{2}*3k^{2} - 3mr^{2}*3k^{2} + 6mr*3k^{2} - 3m*3k^{2} + 13m^{4}r^{2}*2k - 2m*5k^{4} + 4m*4k^{3} - 8m^{3}r*3k^{2} - 10m^{3}r^{2}*2k + 12m^{3}r*2k - 2m^{3}*2k + 3m^{2}r^{2}*2k - 6m^{2}r*2k + 3m^{2}*2k - 6m^{5}r^{2} + m^{2}*4k^{3} + 2m^{4}r*2k + 3m^{4}r^{2} - 4m^{4}r + m^{4} - m^{3}r^{2} + 2m^{3}r - m^{3} + 0\\=&6k^{5} - 20mrk^{4} + 10rk^{4} - 10k^{4} + 40m^{2}rk^{3} - 8rk^{3} + 16m^{2}r^{2}k^{3} - 16mr^{2}k^{3} + 4r^{2}k^{3} + 4k^{3} - 36m^{3}r^{2}k^{2} + 33m^{2}r^{2}k^{2} - 30m^{2}rk^{2} - 3m^{2}k^{2} - 9mr^{2}k^{2} + 18mrk^{2} - 9mk^{2} + 26m^{4}r^{2}k - 10mk^{4} + 16mk^{3} - 24m^{3}rk^{2} - 20m^{3}r^{2}k + 24m^{3}rk - 4m^{3}k + 6m^{2}r^{2}k - 12m^{2}rk + 6m^{2}k + 4m^{4}rk + 4m^{2}k^{3} - 6m^{5}r^{2} + 3m^{4}r^{2} - 4m^{4}r - m^{3}r^{2} + 2m^{3}r + m^{4} - m^{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!