There are 1 questions in this calculation: for each question, the 2 derivative of y is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({(\frac{sin(2x + y)}{4})}^{2}){\frac{1}{(2x + y)}}^{2} - ({(\frac{sin(2x - y)}{4})}^{2}){\frac{1}{(2x - y)}}^{2}\ with\ respect\ to\ y:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{0}sin^{2}(2x + y)}{(2x + y)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{0}sin^{2}(2x + y)}{(2x + y)^{2}}\right)}{dy}\\=&\frac{1}{0}(\frac{-2(0 + 1)}{(2x + y)^{3}})sin^{2}(2x + y) + \frac{\frac{1}{0}*2sin(2x + y)cos(2x + y)(0 + 1)}{(2x + y)^{2}}\\=&\frac{2sin(2x + y)cos(2x + y)}{0(2x + y)^{2}} - \frac{2sin^{2}(2x + y)}{0(2x + y)^{3}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{2sin(2x + y)cos(2x + y)}{0(2x + y)^{2}} - \frac{2sin^{2}(2x + y)}{0(2x + y)^{3}}\right)}{dy}\\=&\frac{2(\frac{-2(0 + 1)}{(2x + y)^{3}})sin(2x + y)cos(2x + y)}{0} + \frac{2cos(2x + y)(0 + 1)cos(2x + y)}{0(2x + y)^{2}} + \frac{2sin(2x + y)*-sin(2x + y)(0 + 1)}{0(2x + y)^{2}} - \frac{2(\frac{-3(0 + 1)}{(2x + y)^{4}})sin^{2}(2x + y)}{0} - \frac{2*2sin(2x + y)cos(2x + y)(0 + 1)}{0(2x + y)^{3}}\\=&\frac{2cos^{2}(2x + y)}{0(2x + y)^{2}} - \frac{4sin(2x + y)cos(2x + y)}{0(2x + y)^{3}} + \frac{6sin^{2}(2x + y)}{0(2x + y)^{4}} - \frac{2sin^{2}(2x + y)}{0(2x + y)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!