There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x - 1){\frac{1}{({x}^{2} - 2x + 4)}}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x}{(x^{2} - 2x + 4)^{3}} - \frac{1}{(x^{2} - 2x + 4)^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x}{(x^{2} - 2x + 4)^{3}} - \frac{1}{(x^{2} - 2x + 4)^{3}}\right)}{dx}\\=&(\frac{-3(2x - 2 + 0)}{(x^{2} - 2x + 4)^{4}})x + \frac{1}{(x^{2} - 2x + 4)^{3}} - (\frac{-3(2x - 2 + 0)}{(x^{2} - 2x + 4)^{4}})\\=&\frac{-6x^{2}}{(x^{2} - 2x + 4)^{4}} + \frac{12x}{(x^{2} - 2x + 4)^{4}} + \frac{1}{(x^{2} - 2x + 4)^{3}} - \frac{6}{(x^{2} - 2x + 4)^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !