Mathematics
语言:
中文
Language:English
==equ==
Unary equation
Multivariate equation
==cal==
Solution inequality
Mathematical calculation
Fractional calculation
Mathematical statistics
Resolving prime factor
Fraction and Decimal Interactions
Lenders ToolBox
==LiAl==
Determinant
Matrix multiplication
Inverse matrix
==der==
Derivative function
==img==
Function image
==que==
Q&A
current location:Solving equations online >
On line Solution of Monovariate Equation
> The history of univariate equation calculation
1000000*n/365*69+3000000*n/365*25=76569.03
0.6148*{(x-sin(2πx)/2π)+(3x-1.25)*0.15}=2/3*{(sin(πx))^3/π}+0.15*440/500*{sin(πx)+sin(1.25π-2πx)}/π
1000000n/25185+3000000n/9125=76569.03
1000000n/25185+3000000n/9125=76569.03
0.5x-0.0796sin(πx)+0.225x-0.09375= 0.2122(sin(πx)^3)+0.03499sin(πx)+0.03499sin(π(1.25-2x))
0.7367x-0.0844sin(2πx)-0.0861=0.2122(sin(πx))^3+0.0374sin(πx)+0.0374sin(1.25π-2πx)
(116 - x)*ln2 = 2^63.30
(x-116)*ln2 = -2^(67.30 - 64)
(x - 116) * ln2 = -2^3.30
(x-116)*ln2 = -2^3.30
(39.402+x)×2.55=39.402+71.604-x
(39.402+x)×2.35=39.402+71.604-x
(39.402+x)×2.25=39.402+71.604-x
(39.402+x)×2.15=39.402+71.604-x
(39.402+x)×2.05=39.402+71.604-x
(39.402+x)×2.05=39.402+72.604-x
1320/(1+x)²-100/(1+x)=1000
(x-116)*ln2 = -2^(67.30 - 64)
-2^(t - 64) = (t-81.524)*ln2
0.6492x-0.0749sin(2πx)-0.0745=0.2122(sin(πx))^3+0.0368sin(πx)+0.0368sin(1.25π-2πx)
Home page
<<
page1476
page1477
page1478
page1479
page1480
... ...
page1482
page1483
page1484
page1485
page1486
>>
Last page
31237 pages in total