Mathematics
语言:中文
Language:English
current location:Solving equations online > On line Solution of Monovariate Equation > The history of univariate equation calculation
    1000000*n/365*69+3000000*n/365*25=76569.03
    0.6148*{(x-sin(2πx)/2π)+(3x-1.25)*0.15}=2/3*{(sin(πx))^3/π}+0.15*440/500*{sin(πx)+sin(1.25π-2πx)}/π
    1000000n/25185+3000000n/9125=76569.03
    1000000n/25185+3000000n/9125=76569.03
    0.5x-0.0796sin(πx)+0.225x-0.09375= 0.2122(sin(πx)^3)+0.03499sin(πx)+0.03499sin(π(1.25-2x))
    0.7367x-0.0844sin(2πx)-0.0861=0.2122(sin(πx))^3+0.0374sin(πx)+0.0374sin(1.25π-2πx)
    (116 - x)*ln2 = 2^63.30
    (x-116)*ln2 = -2^(67.30 - 64)
    (x - 116) * ln2 = -2^3.30
    (x-116)*ln2 = -2^3.30
    (39.402+x)×2.55=39.402+71.604-x
    (39.402+x)×2.35=39.402+71.604-x
    (39.402+x)×2.25=39.402+71.604-x
    (39.402+x)×2.15=39.402+71.604-x
    (39.402+x)×2.05=39.402+71.604-x
    (39.402+x)×2.05=39.402+72.604-x
    1320/(1+x)²-100/(1+x)=1000
    (x-116)*ln2 = -2^(67.30 - 64)
    -2^(t - 64) = (t-81.524)*ln2
    0.6492x-0.0749sin(2πx)-0.0745=0.2122(sin(πx))^3+0.0368sin(πx)+0.0368sin(1.25π-2πx)

Home page << page1476 page1477 page1478 page1479 page1480 ... ... page1482 page1483 page1484 page1485 page1486 >> Last page 31237 pages in total