Mathematics
语言:中文
Language:English
current location:Solving equations online > On line Solution of Monovariate Equation > The history of univariate equation calculation
    x/5+5 = x
    1.0179x-0.1117584sin(2πx)-0.131625=0.2122(sin(πx))^3+0.0409sin(πx)+0.0409sin(1.25π-2πx)
    x/5+5 = x
    x/7+5=x
    0.54x-0.0859sin(πx)+0.243x-0.10125 = 0.2122(sin(πx)^3)+0.0409sin(πx)+0.0409sin(π(1.25-2x))
    0.291*{(x-sin(2πx)/2π)+(3x-1.25)*0.165}=2/3*{(sin(πx))^3/π}+0.65*516/600*{sin(πx)+sin(1.25π-2πx)}/π
    0.35*{(x-sin(2πx)/2π)+(3x-1.25)*0.13}=2/3*{(sin(πx))^3/π}+0.13*564/650*{sin(πx)+sin(1.25π-2πx)}/π
    0.2442*{(x-sin(2πx)/2π)+(3x-1.25)*0.15}=2/3*{(sin(πx))^3/π}+0.15*498/550*{sin(πx)+sin(1.25π-2πx)}/π
    ln(x+1)/sinx
    0.253*{(x-sin(2πx)/2π)+(3x-1.25)*0.15}=2/3*{(sin(πx))^3/π}+0.15*485/550*{sin(πx)+sin(1.25π-2πx)}/π
    0.56x-0.0891sin(πx)+0.2688x-0.112 = 0.2122(sin(πx)^3)+0.0453sin(πx)+0.0453sin(π(1.25-2x))
    0.253*{(x-sin(2πx)/2π)+(3x-1.25)*0.15}=2/3*{(sin(πx))^3/π}+0.15*485/550*{sin(πx)+sin(1.25π-2πx)}/π
    0.56x-0.0891sin(πx)+0.2688x-0.112 = 0.2122(sin(πx)^3)+0.0453sin(πx)+0.0453sin(π(1.25-2x))
    0.388*{(x-sin(2πx)/2π)+(3x-1.25)*0.153}=2/3*{(sin(πx))^3/π}+0.153*495/550*{sin(πx)+sin(1.25π-2πx)}/π
    (3-x)(3+x)+xx=9
    X+X/1.13*0.13=85
    X+X/1.13*0.13=53
    X+X/1.13*0.13=72
    X+X/1.13*0.13=48
    X+X/1.13*0.13=46

Home page << page1536 page1537 page1538 page1539 page1540 ... ... page1542 page1543 page1544 page1545 page1546 >> Last page 31237 pages in total