Mathematics
语言:
中文
Language:English
==equ==
Unary equation
Multivariate equation
==cal==
Solution inequality
Mathematical calculation
Fractional calculation
Mathematical statistics
Resolving prime factor
Fraction and Decimal Interactions
Lenders ToolBox
==LiAl==
Determinant
Matrix multiplication
Inverse matrix
==der==
Derivative function
==img==
Function image
==que==
Q&A
current location:Solving equations online >
On line Solution of Monovariate Equation
> The history of univariate equation calculation
x=4×10^(-3)×(1-(15-x×(7000))/4)^2
4X+1/4X+3=4/3
x+16=2x-21
4X+1/4X+3
x^2*(82.36-0.5x)/[(0.24-x)^2*(7.52-x)]=10000
x/{(0.24-x)*[[(7.52-0.5x)/(82.36-0.5x)]^0.5]} = 100
(160+40(38-x))(x-22)=3640
1500-1500/(5.6*x)*0.2*x-5.4*x=0
x/{(0.24-x)*[(7.52-0.5x)/(82.36-0.5x)]^0.5} = 100
1500-1500/(5.6*x)*0.2*x=5.4*x
x/{(0.24-x)[(7.52-0.5x)/(82.36-0.5x)]^0.5} = 100
x^2/{(0.24-x)[(7.52-0.5x)/(82.36-0.5x)]^(1/2)} = 100
x^2/{(0.24-x)[(7.52-x)/(82.36-x)]^(1/2)} = 100
1000-1000/(5.6*x)*0.2*x=5.4*x
x^2/{(0.24-x)^2*[(7.52-x)/(82.36-x)]^(1/2)}=100
-x²/1-x²
m^2-4*m+40
1000-(1000/5.6*x)*0.2*x=5.4*x
X-X*(1-0.2)*0.2=4000
x²-150x+6000=0
Home page
<<
page2736
page2737
page2738
page2739
page2740
... ...
page2742
page2743
page2744
page2745
page2746
>>
Last page
31237 pages in total