Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1/(d+1)+1/(d+5)+1/(d+10) = 1/(d+3) .
    Question type: Equation
    Solution:Original question:
     1 ÷ ( d + 1) + 1 ÷ ( d + 5) + 1 ÷ ( d + 10) = 1 ÷ ( d + 3)
     Multiply both sides of the equation by:( d + 1) ,  ( d + 3)
     1( d + 3) + 1 ÷ ( d + 5) × ( d + 1)( d + 3) + 1 ÷ ( d + 10) × ( d + 1)( d + 3) = 1( d + 1)
    Remove a bracket on the left of the equation::
     1 d + 1 × 3 + 1 ÷ ( d + 5) × ( d + 1)( d + 3) + 1 ÷ ( d + 10) × ( d + 1)( d + 3) = 1( d + 1)
    Remove a bracket on the right of the equation::
     1 d + 1 × 3 + 1 ÷ ( d + 5) × ( d + 1)( d + 3) + 1 ÷ ( d + 10) × ( d + 1)( d + 3) = 1 d + 1 × 1
    The equation is reduced to :
     1 d + 3 + 1 ÷ ( d + 5) × ( d + 1)( d + 3) + 1 ÷ ( d + 10) × ( d + 1)( d + 3) = 1 d + 1
     Multiply both sides of the equation by:( d + 5)
     1 d ( d + 5) + 3( d + 5) + 1( d + 1)( d + 3) + 1 ÷ ( d + 10) × ( d + 1)( d + 3) = 1 d ( d + 5) + 1( d + 5)
    Remove a bracket on the left of the equation:
     1 d d + 1 d × 5 + 3( d + 5) + 1( d + 1)( d + 3) + 1 = 1 d ( d + 5) + 1( d + 5)
    Remove a bracket on the right of the equation::
     1 d d + 1 d × 5 + 3( d + 5) + 1( d + 1)( d + 3) + 1 = 1 d d + 1 d × 5 + 1( d + 5)
    The equation is reduced to :
     1 d d + 5 d + 3( d + 5) + 1( d + 1)( d + 3) + 1 ÷ ( d + 10) = 1 d d + 5 d + 1( d + 5)
     Multiply both sides of the equation by:( d + 10)
     1 d d ( d + 10) + 5 d ( d + 10) + 3( d + 5)( d + 10) + 1( d + 1) = 1 d d ( d + 10) + 5 d ( d + 10) + 1( d + 5)( d + 10)
    Remove a bracket on the left of the equation:
     1 d d d + 1 d d × 10 + 5 d ( d + 10) + 3 = 1 d d ( d + 10) + 5 d ( d + 10) + 1( d + 5)( d + 10)
    Remove a bracket on the right of the equation::
     1 d d d + 1 d d × 10 + 5 d ( d + 10) + 3 = 1 d d d + 1 d d × 10 + 5 d ( d + 10) + 1
    The equation is reduced to :
     1 d d d + 10 d d + 5 d ( d + 10) + 3( d + 5) = 1 d d d + 10 d d + 5 d ( d + 10) + 1( d + 5)
    Remove a bracket on the left of the equation:
     1 d d d + 10 d d + 5 d d + 5 d = 1 d d d + 10 d d + 5 d ( d + 10) + 1( d + 5)
    Remove a bracket on the right of the equation::
     1 d d d + 10 d d + 5 d d + 5 d = 1 d d d + 10 d d + 5 d d + 5 d
    The equation is reduced to :
     1 d d d + 10 d d + 5 d d + 50 d = 1 d d d + 10 d d + 5 d d + 50 d
    Remove a bracket on the left of the equation:
     1 d d d + 10 d d + 5 d d + 50 d = 1 d d d + 10 d d + 5 d d + 50 d
    Remove a bracket on the right of the equation::
     1 d d d + 10 d d + 5 d d + 50 d = 1 d d d + 10 d d + 5 d d + 50 d
    The equation is reduced to :
     1 d d d + 10 d d + 5 d d + 50 d = 1 d d d + 10 d d + 5 d d + 50 d
    Remove a bracket on the left of the equation:
     1 d d d + 10 d d + 5 d d + 50 d = 1 d d d + 10 d d + 5 d d + 50 d
    Remove a bracket on the right of the equation::
     1 d d d + 10 d d + 5 d d + 50 d = 1 d d d + 10 d d + 5 d d + 50 d
    The equation is reduced to :
     1 d d d + 10 d d + 5 d d + 50 d = 1 d d d + 10 d d + 5 d d + 50 d

    
        d≈-7.268414 , keep 6 decimal places
    
    There are 1 solution(s).


解一元一次方程的详细方法请参阅:《一元一次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。