Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (1+x)*(1+x)*(1+x)*(1+x)*(1+x)*(1+x)*(1+x)*(1+x)*(1+x)*(1+x)*23656 = 27592 .
    Question type: Equation
    Solution:Original question:
     (1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x ) × 23656 = 27592
    Remove the bracket on the left of the equation:
     Left side of the equation = 1(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x ) × 23656 + x
                                             = 23656(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x ) + x (1 + x )
                                             = 23656 × 1(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x ) + 23656 x
                                             = 23656(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x ) + 23656 x (1 + x )
                                             = 23656 × 1(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x ) + 23656 x (1 + x )
                                             = 23656(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x ) + 23656 x (1 + x )(1 + x )
                                             = 23656 × 1(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x ) + 23656 x (1 + x )(1 + x )
                                             = 23656(1 + x )(1 + x )(1 + x )(1 + x )(1 + x )(1 + x ) + 23656 x (1 + x )(1 + x )(1 + x )
                                             = 23656 × 1(1 + x )(1 + x )(1 + x )(1 + x )(1 + x ) + 23656 x (1 + x )(1 + x )(1 + x )
                                             = 23656(1 + x )(1 + x )(1 + x )(1 + x )(1 + x ) + 23656 x (1 + x )(1 + x )(1 + x )(1 + x )
                                             = 23656 × 1(1 + x )(1 + x )(1 + x )(1 + x ) + 23656 x (1 + x )(1 + x )(1 + x )(1 + x )
                                             = 23656(1 + x )(1 + x )(1 + x )(1 + x ) + 23656 x (1 + x )(1 + x )(1 + x )(1 + x ) + 23656
                                             = 23656 × 1(1 + x )(1 + x )(1 + x ) + 23656 x (1 + x )(1 + x )(1 + x ) + 23656 x
                                             = 23656(1 + x )(1 + x )(1 + x ) + 23656 x (1 + x )(1 + x )(1 + x ) + 23656 x (1 + x )
                                             = 23656 × 1(1 + x )(1 + x ) + 23656 x (1 + x )(1 + x ) + 23656 x (1 + x )(1 + x )
                                             = 23656(1 + x )(1 + x ) + 23656 x (1 + x )(1 + x ) + 23656 x (1 + x )(1 + x )(1 + x )
                                             = 23656 × 1(1 + x ) + 23656 x (1 + x ) + 23656 x (1 + x )(1 + x ) + 23656 x
                                             = 23656(1 + x ) + 23656 x (1 + x ) + 23656 x (1 + x )(1 + x ) + 23656 x (1 + x )
                                             = 23656 × 1 + 23656 x + 23656 x (1 + x ) + 23656 x (1 + x )(1 + x ) + 23656
                                             = 23656 + 23656 x + 23656 x (1 + x ) + 23656 x (1 + x )(1 + x ) + 23656 x
                                             = 23656 + 23656 x + 23656 x × 1 + 23656 x x + 23656 x (1 + x )
                                             = 23656 + 23656 x + 23656 x + 23656 x x + 23656 x (1 + x )(1 + x )
                                             = 23656 + 47312 x + 23656 x x + 23656 x (1 + x )(1 + x ) + 23656 x
                                             = 23656 + 47312 x + 23656 x x + 23656 x × 1(1 + x ) + 23656 x
                                             = 23656 + 47312 x + 23656 x x + 23656 x (1 + x ) + 23656 x x

    The solution of the equation:
        x1≈-2.015510 , keep 6 decimal places
        x2≈0.015510 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。