Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 290.09+75+(60*P-2184.4)*(1-25%) = 485.02 .
    Question type: Equation
    Solution:Original question:
     
29009
100
+ 75 + (60 P
10922
5
)(1
25
100
) =
24251
50
     Left side of the equation =
36509
100
+ (60 P
10922
5
)(1
25
100
)
    The equation is transformed into :
     
36509
100
+ (60 P
10922
5
)(1
25
100
) =
24251
50
    Remove the bracket on the left of the equation:
     Left side of the equation =
36509
100
+ 60 P (1
25
100
)
10922
5
(1
25
100
)
                                             =
36509
100
+ 60 P × 160 P ×
25
100
10922
5
(1
25
100
)
                                             =
36509
100
+ 60 P 15 P
10922
5
(1
25
100
)
                                             =
36509
100
+ 45 P
10922
5
(1
25
100
)
                                             =
36509
100
+ 45 P
10922
5
× 1 +
10922
5
×
25
100
                                             =
36509
100
+ 45 P
10922
5
+
5461
10
                                             = -
127321
100
+ 45 P
    The equation is transformed into :
      -
127321
100
+ 45 P =
24251
50

    Transposition :
     45 P =
24251
50
+
127321
100

    Combine the items on the right of the equation:
     45 P =
175823
100

    The coefficient of the unknown number is reduced to 1 :
      P =
175823
100
÷ 45
        =
175823
100
×
1
45

    We obtained :
      P =
175823
4500
    This is the solution of the equation.

    Convert the result to decimal form :
      P = 39.071778



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。