Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (0.75*(x-888)-600)/1000 = (0.75*(x-600)-600)/1400 .
    Question type: Equation
    Solution:Original question:
     (
3
4
( x 888)600) ÷ 1000 = (
3
4
( x 600)600) ÷ 1400
    Remove the bracket on the left of the equation:
     Left side of the equation =
3
4
( x 888) ×
1
1000
600 ×
1
1000
                                             =
3
4000
( x 888)
3
5
                                             =
3
4000
x
3
4000
× 888
3
5
                                             =
3
4000
x
333
500
3
5
                                             =
3
4000
x
633
500
    The equation is transformed into :
     
3
4000
x
633
500
= (
3
4
( x 600)600) ÷ 1400
    Remove the bracket on the right of the equation:
     Right side of the equation =
3
4
( x 600) ×
1
1400
600 ×
1
1400
                                               =
3
5600
( x 600)
3
7
                                               =
3
5600
x
3
5600
× 600
3
7
                                               =
3
5600
x
9
28
3
7
                                               =
3
5600
x
3
4
    The equation is transformed into :
     
3
4000
x
633
500
=
3
5600
x
3
4

    Transposition :
     
3
4000
x
3
5600
x = -
3
4
+
633
500

    Combine the items on the left of the equation:
     
3
14000
x = -
3
4
+
633
500

    Combine the items on the right of the equation:
     
3
14000
x =
129
250

    The coefficient of the unknown number is reduced to 1 :
      x =
129
250
÷
3
14000
        =
129
250
×
14000
3
        = 43 × 56

    We obtained :
      x = 2408
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。