Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x+101)×0.952+219+(x+101)*0.1+(x+101)*0.5+219 = (0.952x+219)×1.12+x*0.1*1.12+(0.5x+219)*1.12 .
    Question type: Equation
    Solution:Original question:
     ( x + 101) ×
119
125
+ 219 + ( x + 101) ×
1
10
+ ( x + 101) ×
1
2
+ 219 = (
119
125
x + 219) ×
28
25
+ x ×
1
10
×
28
25
+ (
1
2
x + 219) ×
28
25
     Left side of the equation = ( x + 101) ×
119
125
+ 438 + ( x + 101) ×
1
10
+ ( x + 101) ×
1
2
    The equation is transformed into :
     ( x + 101) ×
119
125
+ 438 + ( x + 101) ×
1
10
+ ( x + 101) ×
1
2
= (
119
125
x + 219) ×
28
25
+ x ×
1
10
×
28
25
+ (
1
2
x + 219) ×
28
25
    Remove the bracket on the left of the equation:
     Left side of the equation = x ×
119
125
+ 101 ×
119
125
+ 438 + ( x + 101) ×
1
10
+ ( x + 101) ×
1
2
                                             = x ×
119
125
+
12019
125
+ 438 + ( x + 101) ×
1
10
+ ( x + 101) ×
1
2
                                             =
119
125
x +
66769
125
+ ( x + 101) ×
1
10
+ ( x + 101) ×
1
2
                                             =
119
125
x +
66769
125
+ x ×
1
10
+ 101 ×
1
10
+ ( x + 101) ×
1
2
                                             =
119
125
x +
66769
125
+ x ×
1
10
+
101
10
+ ( x + 101) ×
1
2
                                             =
263
250
x +
136063
250
+ ( x + 101) ×
1
2
                                             =
263
250
x +
136063
250
+ x ×
1
2
+ 101 ×
1
2
                                             =
263
250
x +
136063
250
+ x ×
1
2
+
101
2
                                             =
194
125
x +
74344
125
    The equation is transformed into :
     
194
125
x +
74344
125
= (
119
125
x + 219) ×
28
25
+ x ×
1
10
×
28
25
+ (
1
2
x + 219) ×
28
25
     Right side of the equation = (
119
125
x + 219) ×
28
25
+ x ×
14
125
+ (
1
2
x + 219) ×
28
25
    The equation is transformed into :
     
194
125
x +
74344
125
= (
119
125
x + 219) ×
28
25
+
14
125
x + (
1
2
x + 219) ×
28
25
    Remove the bracket on the right of the equation:
     Right side of the equation =
119
125
x ×
28
25
+ 219 ×
28
25
+
14
125
x + (
1
2
x + 219) ×
28
25
                                               =
3332
3125
x +
6132
25
+
14
125
x + (
1
2
x + 219) ×
28
25
                                               =
3682
3125
x +
6132
25
+ (
1
2
x + 219) ×
28
25
                                               =
3682
3125
x +
6132
25
+
1
2
x ×
28
25
+ 219 ×
28
25
                                               =
3682
3125
x +
6132
25
+
14
25
x +
6132
25
                                               =
5432
3125
x +
12264
25
    The equation is transformed into :
     
194
125
x +
74344
125
=
5432
3125
x +
12264
25

    Transposition :
     
194
125
x
5432
3125
x =
12264
25
74344
125

    Combine the items on the left of the equation:
      -
582
3125
x =
12264
25
74344
125

    Combine the items on the right of the equation:
      -
582
3125
x = -
13024
125

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
13024
125
=
582
3125
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
582
3125
x =
13024
125

    The coefficient of the unknown number is reduced to 1 :
      x =
13024
125
÷
582
3125
        =
13024
125
×
3125
582
        = 6512 ×
25
291

    We obtained :
      x =
162800
291
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 559.450172



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。