Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (1453-x)/1453+(1655-x)/4347 = 0.17285 .
    Question type: Equation
    Solution:Original question:
     (1453 x ) ÷ 1453 + (1655 x ) ÷ 4347 =
3457
20000
    Remove the bracket on the left of the equation:
     Left side of the equation = 1453 ×
1
1453
x ×
1
1453
+ (1655 x ) ×
1
4347
                                             =
1453
1453
x ×
1
1453
+ (1655 x ) ×
1
4347
                                             =
1453
1453
1
1453
x + 1655 ×
1
4347
x ×
1
4347
                                             =
1453
1453
1
1453
x +
1655
4347
x ×
1
4347
                                             =
6002
4347
5800
6316191
x
    The equation is transformed into :
     
6002
4347
5800
6316191
x =
3457
20000

    Transposition :
      -
5800
6316191
x =
3457
20000
6002
4347

    Combine the items on the right of the equation:
      -
5800
6316191
x = -
105012421
86940000

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
105012421
86940000
=
5800
6316191
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
5800
6316191
x =
105012421
86940000

    The coefficient of the unknown number is reduced to 1 :
      x =
105012421
86940000
÷
5800
6316191
        =
105012421
86940000
×
6316191
5800
        =
105012421
20000
×
1453
5800

    We obtained :
      x =
152583047713
116000000
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。