Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x×40.19%+289)×(1+67.5%) = 2000 .
    Question type: Equation
    Solution:Original question:
     ( x ×
4019
10000
+ 289)(1 +
135
200
) = 2000
    Remove the bracket on the left of the equation:
     Left side of the equation = x ×
4019
10000
(1 +
135
200
) + 289(1 +
135
200
)
                                             = x ×
4019
10000
× 1 + x ×
4019
10000
×
135
200
+ 289(1 +
135
200
)
                                             = x ×
4019
10000
+ x ×
108513
400000
+ 289(1 +
135
200
)
                                             =
269273
400000
x + 289(1 +
135
200
)
                                             =
269273
400000
x + 289 × 1 + 289 ×
135
200
                                             =
269273
400000
x + 289 +
7803
40
                                             =
269273
400000
x +
19363
40
    The equation is transformed into :
     
269273
400000
x +
19363
40
= 2000

    Transposition :
     
269273
400000
x = 2000
19363
40

    Combine the items on the right of the equation:
     
269273
400000
x =
60637
40

    The coefficient of the unknown number is reduced to 1 :
      x =
60637
40
÷
269273
400000
        =
60637
40
×
400000
269273
        = 60637 ×
10000
269273

    We obtained :
      x =
606370000
269273
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 2251.878205



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。