Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 80*(1-(m/57)*(1-2.94/3.82)) = 71.94 .
    Question type: Equation
    Solution:Original question:
     80(1( m ÷ 57)(1
147
50
÷
191
50
)) =
3597
50
    Remove the bracket on the left of the equation:
     Left side of the equation = 80 × 180( m ÷ 57)(1
147
50
÷
191
50
)
                                             = 8080( m ÷ 57)(1
147
50
÷
191
50
)
                                             = 8080 m ÷ 57 × (1
147
50
÷
191
50
)
                                             = 80
80
57
m (1
147
50
÷
191
50
)
                                             = 80
80
57
m × 1 +
80
57
m ×
147
50
÷
191
50
                                             = 80
80
57
m +
3920
3629
m
                                             = 80
3520
10887
m
    The equation is transformed into :
     80
3520
10887
m =
3597
50

    Transposition :
      -
3520
10887
m =
3597
50
80

    Combine the items on the right of the equation:
      -
3520
10887
m = -
403
50

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     
403
50
=
3520
10887
m

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
3520
10887
m =
403
50

    The coefficient of the unknown number is reduced to 1 :
      m =
403
50
÷
3520
10887
        =
403
50
×
10887
3520

    We obtained :
      m =
4387461
176000
    This is the solution of the equation.

    Convert the result to decimal form :
      m = 24.928756



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。