Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x-19.5-(x/1.13*0.13-19.5/1.03*0.13)-(x/1.13*0.13-19.5/1.03*0.13)*0.12-x/1.13*0.0003 = 1.95 .
    Question type: Equation
    Solution:Original question:
      x
39
2
( x ÷
113
100
×
13
100
39
2
÷
103
100
×
13
100
)( x ÷
113
100
×
13
100
39
2
÷
103
100
×
13
100
) ×
3
25
x ÷
113
100
×
3
10000
=
39
20
     Left side of the equation = x
39
2
( x ÷
113
100
×
13
100
39
2
÷
103
100
×
13
100
)( x ÷
113
100
×
13
100
39
2
÷
103
100
×
13
100
) ×
3
25
x ×
3
11300
                                             =
11297
11300
x
39
2
( x ÷
113
100
×
13
100
39
2
÷
103
100
×
13
100
)( x ÷
113
100
×
13
100
39
2
÷
103
100
×
13
100
) ×
3
25
    The equation is transformed into :
     
11297
11300
x
39
2
( x ÷
113
100
×
13
100
39
2
÷
103
100
×
13
100
)( x ÷
113
100
×
13
100
39
2
÷
103
100
×
13
100
) ×
3
25
=
39
20
    Remove the bracket on the left of the equation:
     Left side of the equation =
11297
11300
x
39
2
x ÷
113
100
×
13
100
+
39
2
÷
103
100
×
13
100
( x ÷
113
100
×
13
100
39
2
÷
103
100
×
13
100
) ×
3
25
                                             =
11297
11300
x
39
2
x ×
13
113
+
507
206
( x ÷
113
100
×
13
100
39
2
÷
103
100
×
13
100
) ×
3
25
                                             =
9997
11300
x
1755
103
( x ÷
113
100
×
13
100
39
2
÷
103
100
×
13
100
) ×
3
25
                                             =
9997
11300
x
1755
103
x ÷
113
100
×
13
100
×
3
25
+
39
2
÷
103
100
×
13
100
×
3
25
                                             =
9997
11300
x
1755
103
x ×
39
2825
+
1521
5150
                                             =
9841
11300
x
86229
5150
    The equation is transformed into :
     
9841
11300
x
86229
5150
=
39
20

    Transposition :
     
9841
11300
x =
39
20
+
86229
5150

    Combine the items on the right of the equation:
     
9841
11300
x =
192543
10300

    The coefficient of the unknown number is reduced to 1 :
      x =
192543
10300
÷
9841
11300
        =
192543
10300
×
11300
9841
        =
14811
103
×
113
757

    We obtained :
      x =
1673643
77971
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 21.464942



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。