Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x-500)×(1-25%)÷3000 = (x-1000×10%)×(1-25%)÷(3000+2000) .
    Question type: Equation
    Solution:Original question:
     ( x 500)(1
25
100
) ÷ 3000 = ( x 1000 ×
10
100
)(1
25
100
) ÷ (3000 + 2000)
     Multiply both sides of the equation by:(3000 + 2000)
     ( x 500)(1
25
100
) ÷ 3000 × (3000 + 2000) = ( x 1000 ×
10
100
)(1
25
100
)
    Remove a bracket on the left of the equation::
      x (1
25
100
) ÷ 3000 × (3000 + 2000)500(1
25
100
) ÷ 3000 × (3000 + 2000) = ( x 1000 ×
10
100
)(1
25
100
)
    Remove a bracket on the right of the equation::
      x (1
25
100
) ÷ 3000 × (3000 + 2000)500(1
25
100
) ÷ 3000 × (3000 + 2000) = x (1
25
100
)1000 ×
10
100
(1
25
100
)
    The equation is reduced to :
      x (1
25
100
) ×
1
3000
(3000 + 2000)
1
6
(1
25
100
)(3000 + 2000) = x (1
25
100
)100(1
25
100
)
    Remove a bracket on the left of the equation:
      x × 1 ×
1
3000
(3000 + 2000) x ×
25
100
×
1
3000
(3000 + 2000)
1
6
(1
25
100
)(3000 + 2000) = x (1
25
100
)100(1
25
100
)
    Remove a bracket on the right of the equation::
      x × 1 ×
1
3000
(3000 + 2000) x ×
25
100
×
1
3000
(3000 + 2000)
1
6
(1
25
100
)(3000 + 2000) = x × 1 x ×
25
100
100(1
25
100
)
    The equation is reduced to :
      x ×
1
3000
(3000 + 2000) x ×
1
12000
(3000 + 2000)
1
6
(1
25
100
)(3000 + 2000) = x × 1 x ×
25
100
100(1
25
100
)
    The equation is reduced to :
      x ×
1
3000
(3000 + 2000) x ×
1
12000
(3000 + 2000)
1
6
(1
25
100
)(3000 + 2000) =
3
4
x 100(1
25
100
)
    Remove a bracket on the left of the equation:
      x ×
1
3000
× 3000 + x ×
1
3000
× 2000 x ×
1
12000
(3000 + 2000)
1
6
(1
25
100
)(3000 + 2000) =
3
4
x 100(1
25
100
)
    Remove a bracket on the right of the equation::
      x ×
1
3000
× 3000 + x ×
1
3000
× 2000 x ×
1
12000
(3000 + 2000)
1
6
(1
25
100
)(3000 + 2000) =
3
4
x 100 × 1 + 100 ×
25
100
    The equation is reduced to :
      x × 1 + x ×
2
3
x ×
1
12000
(3000 + 2000)
1
6
(1
25
100
)(3000 + 2000) =
3
4
x 100 + 25
    The equation is reduced to :
     
5
3
x x ×
1
12000
(3000 + 2000)
1
6
(1
25
100
)(3000 + 2000) =
3
4
x 75
    Remove a bracket on the left of the equation:
     
5
3
x x ×
1
12000
× 3000 x ×
1
12000
× 2000
1
6
(1
25
100
)(3000 + 2000) =
3
4
x 75
    The equation is reduced to :
     
5
3
x x ×
1
4
x ×
1
6
1
6
(1
25
100
)(3000 + 2000) =
3
4
x 75
    The equation is reduced to :
     
5
4
x
1
6
(1
25
100
)(3000 + 2000) =
3
4
x 75
    Remove a bracket on the left of the equation:
     
5
4
x
1
6
× 1(3000 + 2000) +
1
6
×
25
100
(3000 + 2000) =
3
4
x 75
    The equation is reduced to :
     
5
4
x
1
6
(3000 + 2000) +
1
24
(3000 + 2000) =
3
4
x 75
    Remove a bracket on the left of the equation:
     
5
4
x
1
6
× 3000
1
6
× 2000 +
1
24
(3000 + 2000) =
3
4
x 75
    The equation is reduced to :
     
5
4
x 500
1000
3
+
1
24
(3000 + 2000) =
3
4
x 75
    The equation is reduced to :
     
5
4
x
2500
3
+
1
24
(3000 + 2000) =
3
4
x 75
    Remove a bracket on the left of the equation:
     
5
4
x
2500
3
+
1
24
× 3000 +
1
24
× 2000 =
3
4
x 75
    The equation is reduced to :
     
5
4
x
2500
3
+ 125 +
250
3
=
3
4
x 75
    The equation is reduced to :
     
5
4
x 625 =
3
4
x 75

    Transposition :
     
5
4
x
3
4
x = - 75 + 625

    Combine the items on the left of the equation:
     
1
2
x = - 75 + 625

    Combine the items on the right of the equation:
     
1
2
x = 550

    The coefficient of the unknown number is reduced to 1 :
      x = 550 ÷
1
2
        = 550 × 2

    We obtained :
      x = 1100
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。