Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (14%-10%)/(14%-x) = (-150-100)/(-150-0) .
    Question type: Equation
    Solution:Original question:
     (
14
100
10
100
) ÷ (
14
100
x ) = ( - 150100) ÷ ( - 1500)
     Multiply both sides of the equation by:(
14
100
x ) ,  ( - 1500)
     (
14
100
10
100
)( - 1500) = ( - 150100)(
14
100
x )
    Remove a bracket on the left of the equation::
     
14
100
( - 1500)
10
100
( - 1500) = ( - 150100)(
14
100
x )
    Remove a bracket on the right of the equation::
     
14
100
( - 1500)
10
100
( - 1500) = - 150(
14
100
x )100(
14
100
x )
    Remove a bracket on the left of the equation:
      -
14
100
× 150
14
100
× 0
10
100
( - 1500) = - 150(
14
100
x )100(
14
100
x )
    Remove a bracket on the right of the equation::
      -
14
100
× 150
14
100
× 0
10
100
( - 1500) = - 150 ×
14
100
+ 150 x 100(
14
100
x )
    The equation is reduced to :
      - 21 0
10
100
( - 1500) = - 21 + 150 x 100(
14
100
x )
    The equation is reduced to :
      - 21
10
100
( - 1500) = - 21 + 150 x 100(
14
100
x )
    Remove a bracket on the left of the equation:
      - 21 +
10
100
× 150 +
10
100
× 0 = - 21 + 150 x 100(
14
100
x )
    Remove a bracket on the right of the equation::
      - 21 +
10
100
× 150 +
10
100
× 0 = - 21 + 150 x 100 ×
14
100
+ 100 x
    The equation is reduced to :
      - 21 + 15 + 0 = - 21 + 150 x 14 + 100 x
    The equation is reduced to :
      - 6 = - 35 + 250 x

    Transposition :
      - 250 x = - 35 + 6

    Combine the items on the right of the equation:
      - 250 x = - 29

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     29 = 250 x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     250 x = 29

    The coefficient of the unknown number is reduced to 1 :
      x = 29 ÷ 250
        = 29 ×
1
250

    We obtained :
      x =
29
250
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.116



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。