Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (30-27)÷(27-24) = (55-t)÷(t-41) .
    Question type: Equation
    Solution:Original question:
     (3027) ÷ (2724) = (55 t ) ÷ ( t 41)
     Multiply both sides of the equation by:(2724) ,  ( t 41)
     (3027)( t 41) = (55 t )(2724)
    Remove a bracket on the left of the equation::
     30( t 41)27( t 41) = (55 t )(2724)
    Remove a bracket on the right of the equation::
     30( t 41)27( t 41) = 55(2724) t (2724)
    Remove a bracket on the left of the equation:
     30 t 30 × 4127( t 41) = 55(2724) t (2724)
    Remove a bracket on the right of the equation::
     30 t 30 × 4127( t 41) = 55 × 2755 × 24 t (2724)
    The equation is reduced to :
     30 t 123027( t 41) = 14851320 t (2724)
    The equation is reduced to :
     30 t 123027( t 41) = 165 t (2724)
    Remove a bracket on the left of the equation:
     30 t 123027 t + 27 × 41 = 165 t (2724)
    Remove a bracket on the right of the equation::
     30 t 123027 t + 27 × 41 = 165 t × 27 + t × 24
    The equation is reduced to :
     30 t 123027 t + 1107 = 165 t × 27 + t × 24
    The equation is reduced to :
     3 t 123 = 1653 t

    Transposition :
     3 t + 3 t = 165 + 123

    Combine the items on the left of the equation:
     6 t = 165 + 123

    Combine the items on the right of the equation:
     6 t = 288

    The coefficient of the unknown number is reduced to 1 :
      t = 288 ÷ 6
        = 288 ×
1
6
        = 48 × 1

    We obtained :
      t = 48
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。