Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (63-53)÷(53-48) = (85-t)÷(t-71) .
    Question type: Equation
    Solution:Original question:
     (6353) ÷ (5348) = (85 t ) ÷ ( t 71)
     Multiply both sides of the equation by:(5348) ,  ( t 71)
     (6353)( t 71) = (85 t )(5348)
    Remove a bracket on the left of the equation::
     63( t 71)53( t 71) = (85 t )(5348)
    Remove a bracket on the right of the equation::
     63( t 71)53( t 71) = 85(5348) t (5348)
    Remove a bracket on the left of the equation:
     63 t 63 × 7153( t 71) = 85(5348) t (5348)
    Remove a bracket on the right of the equation::
     63 t 63 × 7153( t 71) = 85 × 5385 × 48 t (5348)
    The equation is reduced to :
     63 t 447353( t 71) = 45054080 t (5348)
    The equation is reduced to :
     63 t 447353( t 71) = 425 t (5348)
    Remove a bracket on the left of the equation:
     63 t 447353 t + 53 × 71 = 425 t (5348)
    Remove a bracket on the right of the equation::
     63 t 447353 t + 53 × 71 = 425 t × 53 + t × 48
    The equation is reduced to :
     63 t 447353 t + 3763 = 425 t × 53 + t × 48
    The equation is reduced to :
     10 t 710 = 4255 t

    Transposition :
     10 t + 5 t = 425 + 710

    Combine the items on the left of the equation:
     15 t = 425 + 710

    Combine the items on the right of the equation:
     15 t = 1135

    The coefficient of the unknown number is reduced to 1 :
      t = 1135 ÷ 15
        = 1135 ×
1
15
        = 227 ×
1
3

    We obtained :
      t =
227
3
    This is the solution of the equation.

    Convert the result to decimal form :
      t = 75.666667



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。