Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (63-49)÷(49-48) = (85-t)÷(t-71) .
    Question type: Equation
    Solution:Original question:
     (6349) ÷ (4948) = (85 t ) ÷ ( t 71)
     Multiply both sides of the equation by:(4948) ,  ( t 71)
     (6349)( t 71) = (85 t )(4948)
    Remove a bracket on the left of the equation::
     63( t 71)49( t 71) = (85 t )(4948)
    Remove a bracket on the right of the equation::
     63( t 71)49( t 71) = 85(4948) t (4948)
    Remove a bracket on the left of the equation:
     63 t 63 × 7149( t 71) = 85(4948) t (4948)
    Remove a bracket on the right of the equation::
     63 t 63 × 7149( t 71) = 85 × 4985 × 48 t (4948)
    The equation is reduced to :
     63 t 447349( t 71) = 41654080 t (4948)
    The equation is reduced to :
     63 t 447349( t 71) = 85 t (4948)
    Remove a bracket on the left of the equation:
     63 t 447349 t + 49 × 71 = 85 t (4948)
    Remove a bracket on the right of the equation::
     63 t 447349 t + 49 × 71 = 85 t × 49 + t × 48
    The equation is reduced to :
     63 t 447349 t + 3479 = 85 t × 49 + t × 48
    The equation is reduced to :
     14 t 994 = 851 t

    Transposition :
     14 t + 1 t = 85 + 994

    Combine the items on the left of the equation:
     15 t = 85 + 994

    Combine the items on the right of the equation:
     15 t = 1079

    The coefficient of the unknown number is reduced to 1 :
      t = 1079 ÷ 15
        = 1079 ×
1
15

    We obtained :
      t =
1079
15
    This is the solution of the equation.

    Convert the result to decimal form :
      t = 71.933333



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。