Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (68-66)÷(66-40) = (85-t)÷(t-71) .
    Question type: Equation
    Solution:Original question:
     (6866) ÷ (6640) = (85 t ) ÷ ( t 71)
     Multiply both sides of the equation by:(6640) ,  ( t 71)
     (6866)( t 71) = (85 t )(6640)
    Remove a bracket on the left of the equation::
     68( t 71)66( t 71) = (85 t )(6640)
    Remove a bracket on the right of the equation::
     68( t 71)66( t 71) = 85(6640) t (6640)
    Remove a bracket on the left of the equation:
     68 t 68 × 7166( t 71) = 85(6640) t (6640)
    Remove a bracket on the right of the equation::
     68 t 68 × 7166( t 71) = 85 × 6685 × 40 t (6640)
    The equation is reduced to :
     68 t 482866( t 71) = 56103400 t (6640)
    The equation is reduced to :
     68 t 482866( t 71) = 2210 t (6640)
    Remove a bracket on the left of the equation:
     68 t 482866 t + 66 × 71 = 2210 t (6640)
    Remove a bracket on the right of the equation::
     68 t 482866 t + 66 × 71 = 2210 t × 66 + t × 40
    The equation is reduced to :
     68 t 482866 t + 4686 = 2210 t × 66 + t × 40
    The equation is reduced to :
     2 t 142 = 221026 t

    Transposition :
     2 t + 26 t = 2210 + 142

    Combine the items on the left of the equation:
     28 t = 2210 + 142

    Combine the items on the right of the equation:
     28 t = 2352

    The coefficient of the unknown number is reduced to 1 :
      t = 2352 ÷ 28
        = 2352 ×
1
28
        = 84 × 1

    We obtained :
      t = 84
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。