Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (68-52)÷(52-40) = (85-t)÷(t-71) .
    Question type: Equation
    Solution:Original question:
     (6852) ÷ (5240) = (85 t ) ÷ ( t 71)
     Multiply both sides of the equation by:(5240) ,  ( t 71)
     (6852)( t 71) = (85 t )(5240)
    Remove a bracket on the left of the equation::
     68( t 71)52( t 71) = (85 t )(5240)
    Remove a bracket on the right of the equation::
     68( t 71)52( t 71) = 85(5240) t (5240)
    Remove a bracket on the left of the equation:
     68 t 68 × 7152( t 71) = 85(5240) t (5240)
    Remove a bracket on the right of the equation::
     68 t 68 × 7152( t 71) = 85 × 5285 × 40 t (5240)
    The equation is reduced to :
     68 t 482852( t 71) = 44203400 t (5240)
    The equation is reduced to :
     68 t 482852( t 71) = 1020 t (5240)
    Remove a bracket on the left of the equation:
     68 t 482852 t + 52 × 71 = 1020 t (5240)
    Remove a bracket on the right of the equation::
     68 t 482852 t + 52 × 71 = 1020 t × 52 + t × 40
    The equation is reduced to :
     68 t 482852 t + 3692 = 1020 t × 52 + t × 40
    The equation is reduced to :
     16 t 1136 = 102012 t

    Transposition :
     16 t + 12 t = 1020 + 1136

    Combine the items on the left of the equation:
     28 t = 1020 + 1136

    Combine the items on the right of the equation:
     28 t = 2156

    The coefficient of the unknown number is reduced to 1 :
      t = 2156 ÷ 28
        = 2156 ×
1
28
        = 77 × 1

    We obtained :
      t = 77
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。