Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (68-48)÷(48-40) = (85-t)÷(t-71) .
    Question type: Equation
    Solution:Original question:
     (6848) ÷ (4840) = (85 t ) ÷ ( t 71)
     Multiply both sides of the equation by:(4840) ,  ( t 71)
     (6848)( t 71) = (85 t )(4840)
    Remove a bracket on the left of the equation::
     68( t 71)48( t 71) = (85 t )(4840)
    Remove a bracket on the right of the equation::
     68( t 71)48( t 71) = 85(4840) t (4840)
    Remove a bracket on the left of the equation:
     68 t 68 × 7148( t 71) = 85(4840) t (4840)
    Remove a bracket on the right of the equation::
     68 t 68 × 7148( t 71) = 85 × 4885 × 40 t (4840)
    The equation is reduced to :
     68 t 482848( t 71) = 40803400 t (4840)
    The equation is reduced to :
     68 t 482848( t 71) = 680 t (4840)
    Remove a bracket on the left of the equation:
     68 t 482848 t + 48 × 71 = 680 t (4840)
    Remove a bracket on the right of the equation::
     68 t 482848 t + 48 × 71 = 680 t × 48 + t × 40
    The equation is reduced to :
     68 t 482848 t + 3408 = 680 t × 48 + t × 40
    The equation is reduced to :
     20 t 1420 = 6808 t

    Transposition :
     20 t + 8 t = 680 + 1420

    Combine the items on the left of the equation:
     28 t = 680 + 1420

    Combine the items on the right of the equation:
     28 t = 2100

    The coefficient of the unknown number is reduced to 1 :
      t = 2100 ÷ 28
        = 2100 ×
1
28
        = 75 × 1

    We obtained :
      t = 75
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。