Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (35+3a÷4)(1600-32a)+400(70+a) = 56000+28000 .
    Question type: Equation
    Solution:Original question:
     (35 + 3 a ÷ 4)(160032 a ) + 400(70 + a ) = 56000 + 28000
    Remove the bracket on the left of the equation:
     Left side of the equation = 35(160032 a ) + 3 a ÷ 4 × (160032 a ) + 400(70 + a )
                                             = 35(160032 a ) +
3
4
a (160032 a ) + 400(70 + a )
                                             = 35 × 160035 × 32 a +
3
4
a (160032 a ) + 400(70 + a )
                                             = 560001120 a +
3
4
a (160032 a ) + 400(70 + a )
                                             = 560001120 a +
3
4
a × 1600
3
4
a × 32 a + 400(70 + a )
                                             = 560001120 a + 1200 a 24 a a + 400(70 + a )
                                             = 56000 + 80 a 24 a a + 400(70 + a )
                                             = 56000 + 80 a 24 a a + 400 × 70 + 400 a
                                             = 56000 + 80 a 24 a a + 28000 + 400 a
                                             = 84000 + 480 a 24 a a
    The equation is transformed into :
     84000 + 480 a 24 a a = 56000 + 28000
     Right side of the equation = 84000
    The equation is transformed into :
     84000 + 480 a 24 a a = 84000

    After the equation is converted into a general formula, it is converted into:
    ( a +0 )( a - 20 )=0
    From
        a + 0 = 0
        a - 20 = 0

    it is concluded that::
        a1=0
        a2=20
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。