Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 72y/(y+12)+58y/(y-15) = 63.25 .
    Question type: Equation
    Solution:Original question:
     72 y ÷ ( y + 12) + 58 y ÷ ( y 15) =
253
4
     Multiply both sides of the equation by:( y + 12)
     72 y + 58 y ÷ ( y 15) × ( y + 12) =
253
4
( y + 12)
    Remove a bracket on the left of the equation::
     72 y + 58 y ÷ ( y 15) × y + 58 y ÷ ( y 15) × 12 =
253
4
( y + 12)
    Remove a bracket on the right of the equation::
     72 y + 58 y ÷ ( y 15) × y + 58 y ÷ ( y 15) × 12 =
253
4
y +
253
4
× 12
    The equation is reduced to :
     72 y + 58 y ÷ ( y 15) × y + 696 y ÷ ( y 15) =
253
4
y + 759
     Multiply both sides of the equation by:( y 15)
     72 y ( y 15) + 58 y y + 696 y =
253
4
y ( y 15) + 759( y 15)
    Remove a bracket on the left of the equation:
     72 y y 72 y × 15 + 58 y y + 696 y =
253
4
y ( y 15) + 759( y 15)
    Remove a bracket on the right of the equation::
     72 y y 72 y × 15 + 58 y y + 696 y =
253
4
y y
253
4
y × 15 + 759( y 15)
    The equation is reduced to :
     72 y y 1080 y + 58 y y + 696 y =
253
4
y y
3795
4
y + 759( y 15)
    The equation is reduced to :
     72 y y 384 y + 58 y y =
253
4
y y
3795
4
y + 759( y 15)
    Remove a bracket on the right of the equation::
     72 y y 384 y + 58 y y =
253
4
y y
3795
4
y + 759 y 759 × 15
    The equation is reduced to :
     72 y y 384 y + 58 y y =
253
4
y y
3795
4
y + 759 y 11385
    The equation is reduced to :
     72 y y 384 y + 58 y y =
253
4
y y
759
4
y 11385
    
    There are 0 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。