Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation [4-(2/m)][-2m/5] = -[2m-8][-13m/10] .
    Question type: Equation
    Solution:Original question:
     (4(2 ÷ m ))( - 2 m ÷ 5) = - (2 m 8)( - 13 m ÷ 10)
    Remove a bracket on the left of the equation::
     4( - 2 m ÷ 5)(2 ÷ m )( - 2 m ÷ 5) = - (2 m 8)( - 13 m ÷ 10)
    Remove a bracket on the right of the equation::
     4( - 2 m ÷ 5)(2 ÷ m )( - 2 m ÷ 5) = - 2 m ( - 13 m ÷ 10) + 8( - 13 m ÷ 10)
    Remove a bracket on the left of the equation:
      - 4 × 2 m ÷ 5(2 ÷ 1)( - 2 × 1 ÷ 5) = - 2 m ( - 13 m ÷ 10) + 8( - 13 m ÷ 10)
    Remove a bracket on the right of the equation::
      - 4 × 2 m ÷ 5(2 ÷ 1)( - 2 × 1 ÷ 5) = 2 m × 13 m ÷ 10 + 8( - 13 m ÷ 10)
    The equation is reduced to :
      -
8
5
m (2 ÷ 1)( - 2 × 1 ÷ 5) =
13
5
m m + 8( - 13 m ÷ 10)
    Remove a bracket on the left of the equation:
      -
8
5
m 2 ÷ 1 × ( - 2 × 1 ÷ 5) =
13
5
m m + 8( - 13 m ÷ 10)
    Remove a bracket on the right of the equation::
      -
8
5
m 2 ÷ 1 × ( - 2 × 1 ÷ 5) =
13
5
m m 8 × 13 m ÷ 10
    The equation is reduced to :
      -
8
5
m 2( - 2 × 1 ÷ 5) =
13
5
m m
52
5
m
    Remove a bracket on the left of the equation:
      -
8
5
m + 2 × 2 × 1 ÷ 5 =
13
5
m m
52
5
m
    The equation is reduced to :
      -
8
5
m +
4
5
=
13
5
m m
52
5
m

    The solution of the equation:
        m1≈-0.088590 , keep 6 decimal places
        m2≈3.473206 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。