Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1/(1/150+1/510)*I-3 = (0.02-I)*8400/43 .
    Question type: Equation
    Solution:Original question:
     1 ÷ (1 ÷ 150 + 1 ÷ 510) × I 3 = (
1
50
I ) × 8400 ÷ 43
     Multiply both sides of the equation by:(1 ÷ 150 + 1 ÷ 510)
     1 I 3(1 ÷ 150 + 1 ÷ 510) = (
1
50
I ) × 8400 ÷ 43 × (1 ÷ 150 + 1 ÷ 510)
    Remove a bracket on the left of the equation::
     1 I 3 × 1 ÷ 1503 × 1 ÷ 510 = (
1
50
I ) × 8400 ÷ 43 × (1 ÷ 150 + 1 ÷ 510)
    Remove a bracket on the right of the equation::
     1 I 3 × 1 ÷ 1503 × 1 ÷ 510 =
1
50
× 8400 ÷ 43 × (1 ÷ 150 + 1 ÷ 510) I × 8400 ÷ 43 × (1 ÷ 150 + 1 ÷ 510)
    The equation is reduced to :
     1 I
1
50
1
170
=
168
43
(1 ÷ 150 + 1 ÷ 510) I ×
8400
43
(1 ÷ 150 + 1 ÷ 510)
    The equation is reduced to :
     1 I
11
425
=
168
43
(1 ÷ 150 + 1 ÷ 510) I ×
8400
43
(1 ÷ 150 + 1 ÷ 510)
    Remove a bracket on the right of the equation::
     1 I
11
425
=
168
43
× 1 ÷ 150 +
168
43
× 1 ÷ 510 I ×
8400
43
(1 ÷ 150 + 1 ÷ 510)
    The equation is reduced to :
     1 I
11
425
=
28
1075
+
28
3655
I ×
8400
43
(1 ÷ 150 + 1 ÷ 510)
    The equation is reduced to :
     1 I
11
425
=
616
18275
I ×
8400
43
(1 ÷ 150 + 1 ÷ 510)
    Remove a bracket on the right of the equation::
     1 I
11
425
=
616
18275
I ×
8400
43
× 1 ÷ 150 I ×
8400
43
× 1 ÷ 510
    The equation is reduced to :
     1 I
11
425
=
616
18275
I ×
56
43
I ×
280
731
    The equation is reduced to :
     1 I
11
425
=
616
18275
1232
731
I

    Transposition :
     1 I +
1232
731
I =
616
18275
+
11
425

    Combine the items on the left of the equation:
     
1963
731
I =
616
18275
+
11
425

    Combine the items on the right of the equation:
     
1963
731
I =
1089
18275

    The coefficient of the unknown number is reduced to 1 :
      I =
1089
18275
÷
1963
731
        =
1089
18275
×
731
1963
        =
1089
25
×
1
1963

    We obtained :
      I =
1089
49075
    This is the solution of the equation.

    Convert the result to decimal form :
      I = 0.022191



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。