Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation {47.56*(1+a)*500+51.61*(1+a)*134}/634 = 50.35 .
    Question type: Equation
    Solution:Original question:
     (
1189
25
(1 + a ) × 500 +
5161
100
(1 + a ) × 134) ÷ 634 =
1007
20
    Remove the bracket on the left of the equation:
     Left side of the equation =
1189
25
(1 + a ) × 500 ×
1
634
+
5161
100
(1 + a ) × 134 ×
1
634
                                             =
11890
317
(1 + a ) +
345787
31700
(1 + a )
                                             =
11890
317
× 1 +
11890
317
a +
345787
31700
(1 + a )
                                             =
11890
317
+
11890
317
a +
345787
31700
(1 + a )
                                             =
11890
317
+
11890
317
a +
345787
31700
× 1 +
345787
31700
a
                                             =
11890
317
+
11890
317
a +
345787
31700
+
345787
31700
a
                                             =
1534787
31700
+
1534787
31700
a
    The equation is transformed into :
     
1534787
31700
+
1534787
31700
a =
1007
20

    Transposition :
     
1534787
31700
a =
1007
20
1534787
31700

    Combine the items on the right of the equation:
     
1534787
31700
a =
15327
7925

    The coefficient of the unknown number is reduced to 1 :
      a =
15327
7925
÷
1534787
31700
        =
15327
7925
×
31700
1534787
        =
15327
317
×
1268
1534787

    We obtained :
      a =
19434636
486527479
    This is the solution of the equation.

    By reducing fraction, we can get:
      a =
61308
1534787

    Convert the result to decimal form :
      a = 0.039946



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。