Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation P(1+0.85/1.05) = 0.15*(25000+50000/1.05-P)+0.85*(0.15*(50000+50000)+0.85*50000/1.05) .
    Question type: Equation
    Solution:Original question:
      P (1 +
17
20
÷
21
20
) =
3
20
(25000 + 50000 ÷
21
20
P ) +
17
20
(
3
20
(50000 + 50000) +
17
20
× 50000 ÷
21
20
)
    Remove the bracket on the left of the equation:
     Left side of the equation = P × 1 + P ×
17
20
÷
21
20
                                             = P × 1 + P ×
17
21
                                             =
38
21
P
    The equation is transformed into :
     
38
21
P =
3
20
(25000 + 50000 ÷
21
20
P ) +
17
20
(
3
20
(50000 + 50000) +
17
20
× 50000 ÷
21
20
)
    Remove the bracket on the right of the equation:
     Right side of the equation =
3
20
× 25000 +
3
20
× 50000 ÷
21
20
3
20
P +
17
20
(
3
20
(50000 + 50000) +
17
20
× 50000 ÷
21
20
)
                                               = 3750 +
50000
7
3
20
P +
17
20
(
3
20
(50000 + 50000) +
17
20
× 50000 ÷
21
20
)
                                               =
76250
7
3
20
P +
17
20
(
3
20
(50000 + 50000) +
17
20
× 50000 ÷
21
20
)
                                               =
76250
7
3
20
P +
17
20
×
3
20
(50000 + 50000) +
17
20
×
17
20
× 50000 ÷
21
20
                                               =
76250
7
3
20
P +
51
400
(50000 + 50000) +
722500
21
                                               =
951250
21
3
20
P +
51
400
(50000 + 50000)
                                               =
951250
21
3
20
P +
51
400
× 50000 +
51
400
× 50000
                                               =
951250
21
3
20
P + 6375 + 6375
                                               =
1219000
21
3
20
P
    The equation is transformed into :
     
38
21
P =
1219000
21
3
20
P

    Transposition :
     
38
21
P +
3
20
P =
1219000
21

    Combine the items on the left of the equation:
     
823
420
P =
1219000
21

    The coefficient of the unknown number is reduced to 1 :
      P =
1219000
21
÷
823
420
        =
1219000
21
×
420
823
        = 1219000 ×
20
823

    We obtained :
      P =
24380000
823
    This is the solution of the equation.

    Convert the result to decimal form :
      P = 29623.329283



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。