Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1/(d-2)+1/(d+1) = 1/(d+2) .
    Question type: Equation
    Solution:Original question:
     1 ÷ ( d 2) + 1 ÷ ( d + 1) = 1 ÷ ( d + 2)
     Multiply both sides of the equation by:( d 2) ,  ( d + 2)
     1( d + 2) + 1 ÷ ( d + 1) × ( d 2)( d + 2) = 1( d 2)
    Remove a bracket on the left of the equation::
     1 d + 1 × 2 + 1 ÷ ( d + 1) × ( d 2)( d + 2) = 1( d 2)
    Remove a bracket on the right of the equation::
     1 d + 1 × 2 + 1 ÷ ( d + 1) × ( d 2)( d + 2) = 1 d 1 × 2
    The equation is reduced to :
     1 d + 2 + 1 ÷ ( d + 1) × ( d 2)( d + 2) = 1 d 2
     Multiply both sides of the equation by:( d + 1)
     1 d ( d + 1) + 2( d + 1) + 1( d 2)( d + 2) = 1 d ( d + 1)2( d + 1)
    Remove a bracket on the left of the equation:
     1 d d + 1 d × 1 + 2( d + 1) + 1( d 2)( d + 2) = 1 d ( d + 1)2( d + 1)
    Remove a bracket on the right of the equation::
     1 d d + 1 d × 1 + 2( d + 1) + 1( d 2)( d + 2) = 1 d d + 1 d × 12( d + 1)
    The equation is reduced to :
     1 d d + 1 d + 2( d + 1) + 1( d 2)( d + 2) = 1 d d + 1 d 2( d + 1)
    Remove a bracket on the left of the equation:
     1 d d + 1 d + 2 d + 2 × 1 + 1( d 2)( d + 2) = 1 d d + 1 d 2( d + 1)
    Remove a bracket on the right of the equation::
     1 d d + 1 d + 2 d + 2 × 1 + 1( d 2)( d + 2) = 1 d d + 1 d 2 d 2 × 1
    The equation is reduced to :
     1 d d + 1 d + 2 d + 2 + 1( d 2)( d + 2) = 1 d d + 1 d 2 d 2
    The equation is reduced to :
     1 d d + 3 d + 2 + 1( d 2)( d + 2) = 1 d d 1 d 2
    Remove a bracket on the left of the equation:
     1 d d + 3 d + 2 + 1 d ( d + 2)1 × 2( d + 2) = 1 d d 1 d 2
    The equation is reduced to :
     1 d d + 3 d + 2 + 1 d ( d + 2)2( d + 2) = 1 d d 1 d 2
    Remove a bracket on the left of the equation:
     1 d d + 3 d + 2 + 1 d d + 1 d × 2 = 1 d d 1 d 2
    The equation is reduced to :
     1 d d + 3 d + 2 + 1 d d + 2 d 2 = 1 d d 1 d 2
    The equation is reduced to :
     1 d d + 5 d + 2 + 1 d d 2( d + 2) = 1 d d 1 d 2
    Remove a bracket on the left of the equation:
     1 d d + 5 d + 2 + 1 d d 2 d 2 = 1 d d 1 d 2
    The equation is reduced to :
     1 d d + 5 d + 2 + 1 d d 2 d 4 = 1 d d 1 d 2
    The equation is reduced to :
     1 d d + 3 d 2 + 1 d d = 1 d d 1 d 2

    After the equation is converted into a general formula, it is converted into:
    ( d + 4 )( d - 0 )=0
    From
        d + 4 = 0
        d - 0 = 0

    it is concluded that::
        d1=-4
        d2=0
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。