Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (6600+x*2.65*4.5)*0.46-(6600+(x+100)*4.5)*0.81 = 0 .
    Question type: Equation
    Solution:Original question:
     (6600 + x ×
53
20
×
9
2
) ×
23
50
(6600 + ( x + 100) ×
9
2
) ×
81
100
= 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 6600 ×
23
50
+ x ×
53
20
×
9
2
×
23
50
(6600 + ( x + 100) ×
9
2
) ×
81
100
                                             = 3036 + x ×
10971
2000
(6600 + ( x + 100) ×
9
2
) ×
81
100
                                             = 3036 +
10971
2000
x 6600 ×
81
100
( x + 100) ×
9
2
×
81
100
                                             = 3036 +
10971
2000
x 5346( x + 100) ×
729
200
                                             = - 2310 +
10971
2000
x ( x + 100) ×
729
200
                                             = - 2310 +
10971
2000
x x ×
729
200
100 ×
729
200
                                             = - 2310 +
10971
2000
x x ×
729
200
729
2
                                             = -
5349
2
+
3681
2000
x
    The equation is transformed into :
      -
5349
2
+
3681
2000
x = 0

    Transposition :
     
3681
2000
x = 0 +
5349
2

    Combine the items on the right of the equation:
     
3681
2000
x =
5349
2

    The coefficient of the unknown number is reduced to 1 :
      x =
5349
2
÷
3681
2000
        =
5349
2
×
2000
3681
        = 1783 ×
1000
1227

    We obtained :
      x =
1783000
1227
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 1453.137734



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。