Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 0.033*0.5/(1+(0.05+0.033x)*0.5) = 0.033*(0.5+0.066*(x-0.2/0.033)/2)/(1+(0.25+0.033*(x-0.2/0.033)/2)*(0.5+0.066*(x-0.2/0.033)/2)) .
    Question type: Equation
    Solution:Original question:
     
33
1000
×
1
2
÷ (1 + (
1
20
+
33
1000
x ) ×
1
2
) =
33
1000
(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) ÷ (1 + (
1
4
+
33
1000
( x
1
5
÷
33
1000
) ÷ 2)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2))
     Multiply both sides of the equation by:(1 + (
1
20
+
33
1000
x ) ×
1
2
) ,  (1 + (
1
4
+
33
1000
( x
1
5
÷
33
1000
) ÷ 2)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2))
     
33
1000
×
1
2
(1 + (
1
4
+
33
1000
( x
1
5
÷
33
1000
) ÷ 2)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)) =
33
1000
(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    Remove a bracket on the left of the equation::
     
33
1000
×
1
2
× 1 +
33
1000
×
1
2
(
1
4
+
33
1000
( x
1
5
÷
33
1000
) ÷ 2)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
33
1000
(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    Remove a bracket on the right of the equation::
     
33
1000
×
1
2
× 1 +
33
1000
×
1
2
(
1
4
+
33
1000
( x
1
5
÷
33
1000
) ÷ 2)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
33
1000
×
1
2
(1 + (
1
20
+
33
1000
x ) ×
1
2
) +
33
1000
×
33
500
( x
1
5
÷
33
1000
) ÷ 2 × (1 + (
1
20
+
33
1000
x ) ×
1
2
)
    The equation is reduced to :
     
33
2000
+
33
2000
(
1
4
+
33
1000
( x
1
5
÷
33
1000
) ÷ 2)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
33
2000
(1 + (
1
20
+
33
1000
x ) ×
1
2
) +
1089
1000000
( x
1
5
÷
33
1000
)(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    Remove a bracket on the left of the equation:
     
33
2000
+
33
2000
×
1
4
(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) +
33
2000
×
33
1000
( x
1
5
÷
33
1000
) ÷ 2 × (
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
33
2000
(1 + (
1
20
+
33
1000
x ) ×
1
2
) +
1089
1000000
( x
1
5
÷
33
1000
)(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    Remove a bracket on the right of the equation::
     
33
2000
+
33
2000
×
1
4
(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) +
33
2000
×
33
1000
( x
1
5
÷
33
1000
) ÷ 2 × (
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
33
2000
× 1 +
33
2000
(
1
20
+
33
1000
x ) ×
1
2
+
1089
1000000
( x
1
5
÷
33
1000
)(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    The equation is reduced to :
     
33
2000
+
33
8000
(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) +
1089
4000000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
33
2000
+
33
4000
(
1
20
+
33
1000
x ) +
1089
1000000
( x
1
5
÷
33
1000
)(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    Remove a bracket on the left of the equation:
     
33
2000
+
33
8000
×
1
2
+
33
8000
×
33
500
( x
1
5
÷
33
1000
) ÷ 2 +
1089
4000000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
33
2000
+
33
4000
(
1
20
+
33
1000
x ) +
1089
1000000
( x
1
5
÷
33
1000
)(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    Remove a bracket on the right of the equation::
     
33
2000
+
33
8000
×
1
2
+
33
8000
×
33
500
( x
1
5
÷
33
1000
) ÷ 2 +
1089
4000000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
33
2000
+
33
4000
×
1
20
+
33
4000
×
33
1000
x +
1089
1000000
( x
1
5
÷
33
1000
)(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    The equation is reduced to :
     
33
2000
+
33
16000
+
1089
8000000
( x
1
5
÷
33
1000
) +
1089
4000000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
33
2000
+
33
80000
+
1089
4000000
x +
1089
1000000
( x
1
5
÷
33
1000
)(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    The equation is reduced to :
     
297
16000
+
1089
8000000
( x
1
5
÷
33
1000
) +
1089
4000000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
1353
80000
+
1089
4000000
x +
1089
1000000
( x
1
5
÷
33
1000
)(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    Remove a bracket on the left of the equation:
     
297
16000
+
1089
8000000
x
1089
8000000
×
1
5
÷
33
1000
+
1089
4000000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
1353
80000
+
1089
4000000
x +
1089
1000000
( x
1
5
÷
33
1000
)(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    Remove a bracket on the right of the equation::
     
297
16000
+
1089
8000000
x
1089
8000000
×
1
5
÷
33
1000
+
1089
4000000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
1353
80000
+
1089
4000000
x +
1089
1000000
x (1 + (
1
20
+
33
1000
x ) ×
1
2
)
1089
1000000
×
1
5
÷
33
1000
× (1 + (
1
20
+
33
1000
x ) ×
1
2
)
    The equation is reduced to :
     
297
16000
+
1089
8000000
x
33
40000
+
1089
4000000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
1353
80000
+
1089
4000000
x +
1089
1000000
x (1 + (
1
20
+
33
1000
x ) ×
1
2
)
33
5000
(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    The equation is reduced to :
     
1419
80000
+
1089
8000000
x +
1089
4000000
( x
1
5
÷
33
1000
)(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
1353
80000
+
1089
4000000
x +
1089
1000000
x (1 + (
1
20
+
33
1000
x ) ×
1
2
)
33
5000
(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    Remove a bracket on the left of the equation:
     
1419
80000
+
1089
8000000
x +
1089
4000000
x (
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
1089
4000000
×
1
5
÷
33
1000
× (
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
1353
80000
+
1089
4000000
x +
1089
1000000
x (1 + (
1
20
+
33
1000
x ) ×
1
2
)
33
5000
(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    Remove a bracket on the right of the equation::
     
1419
80000
+
1089
8000000
x +
1089
4000000
x (
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
1089
4000000
×
1
5
÷
33
1000
× (
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
1353
80000
+
1089
4000000
x +
1089
1000000
x × 1 +
1089
1000000
x (
1
20
+
33
1000
x ) ×
1
2
33
5000
(1 + (
1
20
+
33
1000
x ) ×
1
2
)
    The equation is reduced to :
     
1419
80000
+
1089
8000000
x +
1089
4000000
x (
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2)
33
20000
(
1
2
+
33
500
( x
1
5
÷
33
1000
) ÷ 2) =
1353
80000
+
1089
4000000
x +
1089
1000000
x +
1089
2000000
x (
1
20
+
33
1000
x )
33
5000
(1 + (
1
20
+
33
1000
x ) ×
1
2
)

    After the equation is converted into a general formula, it is converted into:
    ( 33x + 4300 )( 33x - 200 )=0
    From
        33x + 4300 = 0
        33x - 200 = 0

    it is concluded that::
        x1=-
4300
33
        x2=
200
33
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。