Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (4*365*1+x-1712.58)*(1-0.25) = 661.5 .
    Question type: Equation
    Solution:Original question:
     (4 × 365 × 1 + x
85629
50
)(1
1
4
) =
1323
2
    Remove the bracket on the left of the equation:
     Left side of the equation = 4 × 365 × 1(1
1
4
) + x (1
1
4
)
85629
50
(1
1
4
)
                                             = 1460(1
1
4
) + x (1
1
4
)
85629
50
(1
1
4
)
                                             = 1460 × 11460 ×
1
4
+ x (1
1
4
)
85629
50
(1
1
4
)
                                             = 1460365 + x (1
1
4
)
85629
50
(1
1
4
)
                                             = 1095 + x (1
1
4
)
85629
50
(1
1
4
)
                                             = 1095 + x × 1 x ×
1
4
85629
50
(1
1
4
)
                                             = 1095 +
3
4
x
85629
50
(1
1
4
)
                                             = 1095 +
3
4
x
85629
50
× 1 +
85629
50
×
1
4
                                             = 1095 +
3
4
x
85629
50
+
85629
200
                                             = -
37887
200
+
3
4
x
    The equation is transformed into :
      -
37887
200
+
3
4
x =
1323
2

    Transposition :
     
3
4
x =
1323
2
+
37887
200

    Combine the items on the right of the equation:
     
3
4
x =
170187
200

    The coefficient of the unknown number is reduced to 1 :
      x =
170187
200
÷
3
4
        =
170187
200
×
4
3
        =
56729
50
× 1

    We obtained :
      x =
56729
50
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 1134.58



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。