Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation z×(2z+1)×(z-2)×(2z-3) = 63 .
    Question type: Equation
    Solution:Original question:
      z (2 z + 1)( z 2)(2 z 3) = 63
    Remove the bracket on the left of the equation:
     Left side of the equation = z × 2 z ( z 2)(2 z 3) + z × 1( z 2)(2 z 3)
                                             = z × 2 z z (2 z 3) z × 2 z × 2(2 z 3) + z × 1
                                             = z × 2 z z (2 z 3) z × 4 z (2 z 3) + z × 1( z 2)
                                             = z × 2 z z × 2 z z × 2 z z × 3 z
                                             = z × 4 z z z z × 6 z z z × 4 z
                                             = z × 4 z z z z × 6 z z z × 4 z
                                             = z × 4 z z z z × 6 z z z × 8 z
                                             = z × 4 z z z z × 6 z z z × 8 z
                                             = z × 4 z z z z × 6 z z z × 8 z
                                             = z × 4 z z z z × 6 z z z × 8 z
                                             = z × 4 z z z z × 6 z z z × 8 z
                                             = z × 4 z z z z × 6 z z z × 8 z
                                             = z × 4 z z z z × 6 z z z × 8 z
    The equation is transformed into :
      z × 4 z z z z × 6 z z z × 8 z = 63

    After the equation is converted into a general formula, it is converted into:
    ( 2z + 3 )( z - 3 )=0
    From
        2z + 3 = 0
        z - 3 = 0

    it is concluded that::
        z1=-
3
2
        z2=3
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。