Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 614.125×1.5×(3.9+t)-179.86×(3.9+1.5t) = 0 .
    Question type: Equation
    Solution:Original question:
     
4913
8
×
3
2
(
39
10
+ t )
8993
50
(
39
10
+
3
2
t ) = 0
     Left side of the equation =
14739
16
(
39
10
+ t )
8993
50
(
39
10
+
3
2
t )
    The equation is transformed into :
     
14739
16
(
39
10
+ t )
8993
50
(
39
10
+
3
2
t ) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation =
14739
16
×
39
10
+
14739
16
t
8993
50
(
39
10
+
3
2
t )
                                             =
574821
160
+
14739
16
t
8993
50
(
39
10
+
3
2
t )
                                             =
574821
160
+
14739
16
t
8993
50
×
39
10
8993
50
×
3
2
t
                                             =
574821
160
+
14739
16
t
350727
500
26979
100
t
                                             =
11564709
4000
+
260559
400
t
    The equation is transformed into :
     
11564709
4000
+
260559
400
t = 0

    Transposition :
     
260559
400
t = 0
11564709
4000

    Combine the items on the right of the equation:
     
260559
400
t = -
11564709
4000

    The coefficient of the unknown number is reduced to 1 :
      t = -
11564709
4000
÷
260559
400
        = -
11564709
4000
×
400
260559
        = -
17443
10
×
1
393

    We obtained :
      t = -
17443
3930
    This is the solution of the equation.

    Convert the result to decimal form :
      t = - 4.438422



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。