Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x+x/1.13*0.13+(x/1.13*0.13*0.13)-2666.4 = 0 .
    Question type: Equation
    Solution:Original question:
      x + x ÷
113
100
×
13
100
+ ( x ÷
113
100
×
13
100
×
13
100
)
13332
5
= 0
     Left side of the equation = x + x ×
13
113
+ ( x ÷
113
100
×
13
100
×
13
100
)
13332
5
                                             =
126
113
x + ( x ÷
113
100
×
13
100
×
13
100
)
13332
5
    The equation is transformed into :
     
126
113
x + ( x ÷
113
100
×
13
100
×
13
100
)
13332
5
= 0
    Remove the bracket on the left of the equation:
     Left side of the equation =
126
113
x + x ÷
113
100
×
13
100
×
13
100
13332
5
                                             =
126
113
x + x ×
169
11300
13332
5
                                             =
12769
11300
x
13332
5
    The equation is transformed into :
     
12769
11300
x
13332
5
= 0

    Transposition :
     
12769
11300
x = 0 +
13332
5

    Combine the items on the right of the equation:
     
12769
11300
x =
13332
5

    The coefficient of the unknown number is reduced to 1 :
      x =
13332
5
÷
12769
11300
        =
13332
5
×
11300
12769
        = 13332 ×
2260
12769

    We obtained :
      x =
30130320
12769
    This is the solution of the equation.

    By reducing fraction, we can get:
      x =
266640
113

    Convert the result to decimal form :
      x = 2359.646018



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。