Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x*(417.52-83.96) = (4-x)*(2449.38-417.52) .
    Question type: Equation
    Solution:Original question:
      x (
10438
25
2099
25
) = (4 x )(
122469
50
10438
25
)
    Remove the bracket on the left of the equation:
     Left side of the equation = x ×
10438
25
x ×
2099
25
                                             =
8339
25
x
    The equation is transformed into :
     
8339
25
x = (4 x )(
122469
50
10438
25
)
    Remove the bracket on the right of the equation:
     Right side of the equation = 4(
122469
50
10438
25
) x (
122469
50
10438
25
)
                                               = 4 ×
122469
50
4 ×
10438
25
x (
122469
50
10438
25
)
                                               =
244938
25
41752
25
x (
122469
50
10438
25
)
                                               =
203186
25
x (
122469
50
10438
25
)
                                               =
203186
25
x ×
122469
50
+ x ×
10438
25
                                               =
203186
25
101593
50
x
    The equation is transformed into :
     
8339
25
x =
203186
25
101593
50
x

    Transposition :
     
8339
25
x +
101593
50
x =
203186
25

    Combine the items on the left of the equation:
     
118271
50
x =
203186
25

    The coefficient of the unknown number is reduced to 1 :
      x =
203186
25
÷
118271
50
        =
203186
25
×
50
118271
        = 203186 ×
2
118271

    We obtained :
      x =
406372
118271
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 3.435939



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。