Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x-22)[160+(38-X)÷3×120] = 3640 .
    Question type: Equation
    Solution:Original question:
     ( x 22)(160 + (38 x ) ÷ 3 × 120) = 3640
    Remove the bracket on the left of the equation:
     Left side of the equation = x (160 + (38 x ) ÷ 3 × 120)22(160 + (38 x ) ÷ 3 × 120)
                                             = x × 160 + x (38 x ) ÷ 3 × 12022(160 + (38 x ) ÷ 3 × 120)
                                             = x × 160 + x (38 x ) × 4022(160 + (38 x ) ÷ 3 × 120)
                                             = 160 x + x × 38 × 40 x x × 4022(160 + (38 x ) ÷ 3 × 120)
                                             = 160 x + x × 1520 x x × 4022(160 + (38 x ) ÷ 3 × 120)
                                             = 1680 x x x × 4022(160 + (38 x ) ÷ 3 × 120)
                                             = 1680 x x x × 4022 × 16022(38 x ) ÷ 3 × 120
                                             = 1680 x x x × 403520880(38 x )
                                             = 1680 x x x × 403520880 × 38 + 880 x
                                             = 1680 x x x × 40352033440 + 880 x
                                             = 2560 x x x × 4036960
    The equation is transformed into :
     2560 x x x × 4036960 = 3640

    After the equation is converted into a general formula, it is converted into:
    ( x - 29 )( x - 35 )=0
    From
        x - 29 = 0
        x - 35 = 0

    it is concluded that::
        x1=29
        x2=35
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。