Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x-8)(200-(x-10)/0.5*10) = 640 .
    Question type: Equation
    Solution:Original question:
     ( x 8)(200( x 10) ÷
1
2
× 10) = 640
    Remove the bracket on the left of the equation:
     Left side of the equation = x (200( x 10) ÷
1
2
× 10)8(200( x 10) ÷
1
2
× 10)
                                             = x × 200 x ( x 10) ÷
1
2
× 108(200( x 10) ÷
1
2
× 10)
                                             = x × 200 x ( x 10) × 208(200( x 10) ÷
1
2
× 10)
                                             = 200 x x x × 20 + x × 10 × 208(200( x 10) ÷
1
2
× 10)
                                             = 200 x x x × 20 + x × 2008(200( x 10) ÷
1
2
× 10)
                                             = 400 x x x × 208(200( x 10) ÷
1
2
× 10)
                                             = 400 x x x × 208 × 200 + 8( x 10) ÷
1
2
× 10
                                             = 400 x x x × 201600 + 160( x 10)
                                             = 400 x x x × 201600 + 160 x 160 × 10
                                             = 400 x x x × 201600 + 160 x 1600
                                             = 560 x x x × 203200
    The equation is transformed into :
     560 x x x × 203200 = 640

    After the equation is converted into a general formula, it is converted into:
    ( x - 12 )( x - 16 )=0
    From
        x - 12 = 0
        x - 16 = 0

    it is concluded that::
        x1=12
        x2=16
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。